Intest Res.  2018 Jul;16(3):346-357. 10.5217/ir.2018.16.3.346.

Impact of microbiota in colorectal carcinogenesis: lessons from experimental models

Affiliations
  • 1Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
  • 2Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
  • 3Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan. yhni@ntu.edu.tw

Abstract

A role of gut microbiota in colorectal cancer (CRC) growth was first suggested in germ-free rats almost 50 years ago, and the existence of disease-associated bacteria (termed pathobionts) had becoming increasingly evident from experimental data of fecal transplantation, and microbial gavage or monoassociation. Altered bacterial compositions in fecal and mucosal specimens were observed in CRC patients compared to healthy subjects. Microbial fluctuations were found at various cancer stages; an increase of bacterial diversity was noted in the adenoma specimens, while a reduction of bacterial richness was documented in CRC samples. The bacterial species enriched in the human cancerous tissues included Escherichia coli, Fusobacterium nucleatum, and enterotoxigenic Bacteroides fragilis. The causal relationship of gut bacteria in tumorigenesis was established by introducing particular bacterial strains in in situ mouse CRC models. Detailed experimental protocols of bacterial gavage and the advantages and caveats of different experimental models are summarized in this review. The microbial genotoxins, enterotoxins, and virulence factors implicated in the mechanisms of bacteria-driven tumorigenesis are described. In conclusion, intestinal microbiota is involved in colon tumorigenesis. Bacteria-targeting intervention would be the next challenge for CRC.

Keyword

Colorectal neoplasms; Microbiota dysbiosis; Mucosa-associated bacteria; Pathobiont; Virulence

MeSH Terms

Adenoma
Animals
Bacteria
Bacteroides fragilis
Carcinogenesis*
Colon
Colorectal Neoplasms
Enterotoxins
Escherichia coli
Fecal Microbiota Transplantation
Fusobacterium nucleatum
Gastrointestinal Microbiome
Healthy Volunteers
Humans
Mice
Microbiota*
Models, Theoretical*
Mutagens
Rats
Virulence
Virulence Factors
Enterotoxins
Mutagens
Virulence Factors

Cited by  3 articles

Effect of gut microbiome on minor complications after a colonoscopy
Jae Hyun Kim, Youn Jung Choi, Hye Jung Kwon, Kyoungwon Jung, Sung Eun Kim, Won Moon, Moo In Park, Seun Ja Park
Intest Res. 2021;19(3):341-348.    doi: 10.5217/ir.2020.00057.

The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment
Sang Hoon Kim, Yun Jeong Lim
Intest Res. 2022;20(1):31-42.    doi: 10.5217/ir.2021.00034.

식이가 대장암의 진행 및 예방에 미치는 영향: 영양소부터 종양 발생까지
Sang Hoon Kim, Dong Hwan Park, Yun Jeong Lim
Korean J Gastroenterol. 2023;82(2):73-83.    doi: 10.4166/kjg.2023.079.


Reference

1. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016; 375:2369–2379. PMID: 27974040.
Article
2. Yu LC, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J Gastrointest Pathophysiol. 2012; 3:27–43. PMID: 22368784.
Article
3. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006; 124:837–848. PMID: 16497592.
Article
4. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016; 14:e1002533. DOI: 10.1371/journal.pbio.1002533. PMID: 27541692.
Article
5. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464:59–65. PMID: 20203603.
6. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017; 15:630–638. PMID: 28626231.
Article
7. Owyang C, Wu GD. The gut microbiome in health and disease. Gastroenterology. 2014; 146:1433–1436. PMID: 24675436.
Article
8. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017; 17:271–285. PMID: 28303904.
Article
9. Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res. 2016; 14:127–138. PMID: 27175113.
Article
10. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013; 13:800–812. PMID: 24132111.
Article
11. Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol. 2013; 6:295–308.
Article
12. Drewes JL, Housseau F, Sears CL. Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. Br J Cancer. 2016; 115:273–280. PMID: 27380134.
Article
13. Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014; 146:1534–1546.e3. PMID: 24406471.
Article
14. Munkholm P. Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther. 2003; 18(Suppl 2):1–5.
Article
15. Brackmann S, Andersen SN, Aamodt G, et al. Relationship between clinical parameters and the colitis-colorectal cancer interval in a cohort of patients with colorectal cancer in inflammatory bowel disease. Scand J Gastroenterol. 2009; 44:46–55. PMID: 18609187.
Article
16. Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res. 2017; 61:1500902. DOI: 10.1002/mnfr.201500902.
Article
17. Tözün N, Vardareli E. Gut microbiome and gastrointestinal cancer: les liaisons dangereuses. J Clin Gastroenterol. 2016; 50(Suppl):S191–S196. PMID: 27741173.
18. Hullar MA, Burnett-Hartman AN, Lampe JW. Gut microbes, diet, and cancer. Cancer Treat Res. 2014; 159:377–399. PMID: 24114492.
Article
19. Hiley CT, Swanton C. Pruning cancer's evolutionary tree with lesion-directed therapy. Cancer Discov. 2016; 6:122–124. PMID: 26851181.
Article
20. Reddy BS, Weisburger JH, Narisawa T, Wynder EL. Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-n'-nitro-N-nitrosoguanidine. Cancer Res. 1974; 34:2368–2372. PMID: 4843537.
21. Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C. Modulation of the intestinal microbiota alters colitisassociated colorectal cancer susceptibility. PLoS One. 2009; 4:e6026. DOI: 10.1371/journal.pone.0006026. PMID: 19551144.
Article
22. Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon tumorigenesis. MBio. 2013; 4:e00692–e00613. DOI: 10.1128/mBio.00692-13. PMID: 24194538.
Article
23. Li Y, Kundu P, Seow SW, et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis. 2012; 33:1231–1238. PMID: 22461519.
Article
24. Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012; 149:1578–1593. PMID: 22726443.
Article
25. Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H. Colorectal carcinogenesis in germfree and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol. 2008; 32:609–617. PMID: 18292938.
Article
26. Rhee KJ, Sethupathi P, Driks A, Lanning DK, Knight KL. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol. 2004; 172:1118–1124. PMID: 14707086.
Article
27. Zackular JP, Baxter NT, Chen GY, Schloss PD. Manipulation of the gut microbiota reveals role in colon tumorigenesis. mSphere. 2015; 1:e00001–e00015. DOI: 10.1128/mSphere.00001-15. PMID: 27303681.
Article
28. Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013; 123:700–711. PMID: 23281400.
Article
29. Hu B, Elinav E, Huber S, et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A. 2013; 110:9862–9867. PMID: 23696660.
Article
30. Donohoe DR, Holley D, Collins LB, et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 2014; 4:1387–1397. PMID: 25266735.
Article
31. Perrin P, Pierre F, Patry Y, et al. Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut. 2001; 48:53–61. PMID: 11115823.
Article
32. Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014; 40:128–139. PMID: 24412617.
Article
33. So SS, Wan ML, El-Nezami H. Probiotics-mediated suppression of cancer. Curr Opin Oncol. 2017; 29:62–72. PMID: 27792053.
Article
34. Zhu Y, Michelle Luo T, Jobin C, Young HA. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 2011; 309:119–127. PMID: 21741763.
Article
35. Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011; 6:e16393. DOI: 10.1371/journal.pone.0016393. PMID: 21297998.
Article
36. Walker AW, Sanderson JD, Churcher C, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011; 11:7. PMID: 21219646.
Article
37. Hansen R, Russell RK, Reiff C, et al. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn's but not in ulcerative colitis. Am J Gastroenterol. 2012; 107:1913–1922. PMID: 23044767.
Article
38. Lepage P, Häsler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011; 141:227–236. PMID: 21621540.
Article
39. Ahn J, Sinha R, Pei Z, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013; 105:1907–1911. PMID: 24316595.
Article
40. Huipeng W, Lifeng G, Chuang G, Jiaying Z, Yuankun C. The differences in colonic mucosal microbiota between normal individual and colon cancer patients by polymerase chain reaction-denaturing gradient gel electrophoresis. J Clin Gastroenterol. 2014; 48:138–144. PMID: 24162169.
Article
41. Shen XJ, Rawls JF, Randall T, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010; 1:138–147. PMID: 20740058.
Article
42. Sanapareddy N, Legge RM, Jovov B, et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 2012; 6:1858–1868. PMID: 22622349.
Article
43. Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013; 66:462–470. PMID: 23733170.
Article
44. Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 2013; 8:e70803. DOI: 10.1371/journal.pone.0070803. PMID: 23940645.
Article
45. Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012; 6:320–329. PMID: 21850056.
Article
46. Kasai C, Sugimoto K, Moritani I, et al. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol Rep. 2016; 35:325–333. PMID: 26549775.
Article
47. Flemer B, Lynch DB, Brown JM, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017; 66:633–643. PMID: 26992426.
Article
48. Gueimonde M, Ouwehand A, Huhtinen H, Salminen E, Salminen S. Qualitative and quantitative analyses of the Bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World J Gastroenterol. 2007; 13:3985–3989. PMID: 17663515.
Article
49. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015; 6:20. PMID: 25699023.
Article
50. Burns MB, Lynch J, Starr TK, Knights D, Blekhman R. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med. 2015; 7:55. PMID: 26170900.
Article
51. Gao R, Kong C, Huang L, et al. Mucosa-associated microbiota signature in colorectal cancer. Eur J Clin Microbiol Infect Dis. 2017; 36:2073–2083. PMID: 28600626.
Article
52. Watt E, Gemmell MR, Berry S, et al. Extending colonic mucosal microbiome analysis-assessment of colonic lavage as a proxy for endoscopic colonic biopsies. Microbiome. 2016; 4:61. PMID: 27884202.
Article
53. Yu LC. Commensal bacterial internalization by epithelial cells: an alternative portal for gut leakiness. Tissue Barriers. 2015; 3:e1008895. DOI: 10.1080/21688370.2015.1008895. PMID: 26451337.
Article
54. Wu LL, Peng WH, Kuo WT, et al. Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-gamma. Am J Pathol. 2014; 184:2260–2274. PMID: 24911373.
Article
55. Johansson ME, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013; 10:352–361. PMID: 23478383.
Article
56. Johansson ME, Gustafsson JK, Holmén-Larsson J, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014; 63:281–291. PMID: 23426893.
Article
57. Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe. 2009; 5:580–592. PMID: 19527885.
Article
58. Bonnet M, Buc E, Sauvanet P, et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res. 2014; 20:859–867. PMID: 24334760.
59. Prorok-Hamon M, Friswell MK, Alswied A, et al. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut. 2014; 63:761–770. PMID: 23846483.
Article
60. Chassaing B, Rolhion N, de Vallée A, et al. Crohn disease: associated adherent-invasive E. coli bacteria target mouse and human Peyer's patches via long polar fimbriae. J Clin Invest. 2011; 121:966–975. PMID: 21339647.
Article
61. Martin HM, Campbell BJ, Hart CA, et al. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology. 2004; 127:80–93. PMID: 15236175.
Article
62. Kleessen B, Kroesen AJ, Buhr HJ, Blaut M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol. 2002; 37:1034–1041. PMID: 12374228.
Article
63. Strauss J, Kaplan GG, Beck PL, et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011; 17:1971–1978. PMID: 21830275.
Article
64. Swidsinski A, Dörffel Y, Loening-Baucke V, et al. Mucosal invasion by fusobacteria is a common feature of acute appendicitis in Germany, Russia, and China. Saudi J Gastroenterol. 2012; 18:55–58. PMID: 22249094.
65. Dharmani P, Strauss J, Ambrose C, Allen-Vercoe E, Chadee K. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun. 2011; 79:2597–2607. PMID: 21536792.
Article
66. Viljoen KS, Dakshinamurthy A, Goldberg P, Blackburn JM. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One. 2015; 10:e0119462. DOI: 10.1371/journal.pone.0119462. PMID: 25751261.
Article
67. Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015; 60:208–215. PMID: 25305284.
68. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012; 338:120–123. PMID: 22903521.
Article
69. Arthur JC, Gharaibeh RZ, Mühlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014; 5:4724. PMID: 25182170.
Article
70. Tomkovich S, Yang Y, Winglee K, et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 2017; 77:2620–2632. PMID: 28416491.
71. Cougnoux A, Dalmasso G, Martinez R, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014; 63:1932–1942. PMID: 24658599.
Article
72. Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014; 5:675–680. PMID: 25483338.
Article
73. Raisch J, Buc E, Bonnet M, et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol. 2014; 20:6560–6572. PMID: 24914378.
74. Raisch J, Rolhion N, Dubois A, Darfeuille-Michaud A, Bringer MA. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. Lab Invest. 2015; 95:296–307. PMID: 25545478.
75. Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of microRNA-21. Gastroenterology. 2017; 152:851–866.e24. PMID: 27876571.
76. Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013; 14:207–215. PMID: 23954159.
77. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009; 15:1016–1022. PMID: 19701202.
78. Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A. 2011; 108:15354–15359. PMID: 21876161.
79. Thiele Orberg E, Fan H, Tam AJ, et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 2017; 10:421–433. PMID: 27301879.
80. Darfeuille-Michaud A, Neut C, Barnich N, et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology. 1998; 115:1405–1413. PMID: 9834268.
Article
81. Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology. 2004; 127:412–421. PMID: 15300573.
Article
82. Mimouna S, Gonçalvès D, Barnich N, Darfeuille-Michaud A, Hofman P, Vouret-Craviari V. Crohn disease-associated Escherichia coli promote gastrointestinal inflammatory disorders by activation of HIF-dependent responses. Gut Microbes. 2011; 2:335–346. PMID: 22157238.
83. Martinez-Medina M, Aldeguer X, Lopez-Siles M, et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis. 2009; 15:872–882. PMID: 19235912.
Article
84. Baumgart M, Dogan B, Rishniw M, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISME J. 2007; 1:403–418. PMID: 18043660.
Article
85. Carvalho FA, Barnich N, Sivignon A, et al. Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med. 2009; 206:2179–2189. PMID: 19737864.
Article
86. Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev. 2012; 36:1046–1082. PMID: 22545799.
Article
87. Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta. 2014; 1840:2783–2793. PMID: 24797039.
Article
88. Chan CH, Cook D, Stanners CP. Increased colon tumor susceptibility in azoxymethane treated CEABAC transgenic mice. Carcinogenesis. 2006; 27:1909–1916. PMID: 16632476.
Article
89. Buc E, Dubois D, Sauvanet P, et al. High prevalence of mucosaassociated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One. 2013; 8:e56964. DOI: 10.1371/journal.pone.0056964. PMID: 23457644.
Article
90. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012; 22:292–298. PMID: 22009990.
Article
91. Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017; 66:70–78. PMID: 26408641.
Article
92. Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One. 2017; 12:e0171602. DOI: 10.1371/journal.pone.0171602. PMID: 28151975.
Article
93. Fredricks DN, Schubert MM, Myerson D. Molecular identification of an invasive gingival bacterial community. Clin Infect Dis. 2005; 41:e1–e4. DOI: 10.1086/430824. PMID: 15937752.
Article
94. Matsuo T, Shirakami T, Ozaki K, Nakanishi T, Yumoto H, Ebisu S. An immunohistological study of the localization of bacteria invading root pulpal walls of teeth with periapical lesions. J Endod. 2003; 29:194–200. PMID: 12669880.
Article
95. Chen Y, Peng Y, Yu J, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget. 2017; 8:31802–31814. PMID: 28423670.
Article
96. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013; 14:195–206. PMID: 23954158.
Article
97. Fardini Y, Wang X, Témoin S, et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol. 2011; 82:1468–1480. PMID: 22040113.
Article
98. Sears CL, Islam S, Saha A, et al. Association of enterotoxigenic Bacteroides fragilis infection with inflammatory diarrhea. Clin Infect Dis. 2008; 47:797–803. PMID: 18680416.
Article
99. Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006; 12:782–786. PMID: 16842574.
Article
100. Rocha ER, Smith CJ. Ferritin-like family proteins in the anaerobe Bacteroides fragilis: when an oxygen storm is coming, take your iron to the shelter. Biometals. 2013; 26:577–591. PMID: 23842847.
Article
101. Betteken MI, Rocha ER, Smith CJ. Dps and DpsL mediate survival in vitro and in vivo during the prolonged oxidative stress response in Bacteroides fragilis. J Bacteriol. 2015; 197:3329–3338. PMID: 26260459.
Article
102. Park Y, Choi JY, Yong D, Lee K, Kim JM. Clinical features and prognostic factors of anaerobic infections: a 7-year retrospective study. Korean J Intern Med. 2009; 24:13–18. PMID: 19270476.
Article
103. Rhee KJ, Wu S, Wu X, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009; 77:1708–1718. PMID: 19188353.
Article
104. Wick EC, Rabizadeh S, Albesiano E, et al. Stat3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis. Inflamm Bowel Dis. 2014; 20:821–834. PMID: 24704822.
Article
105. Kuo WT, Lee TC, Yang HY, et al. LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis. Cell Death Differ. 2015; 22:1590–1604. PMID: 25633197.
Article
106. Kuo WT, Lee TC, Yu LC. Eritoran suppresses colon cancer by altering a functional balance in Toll-like receptors that bind lipopolysaccharide. Cancer Res. 2016; 76:4684–4695. PMID: 27328732.
Article
107. Kuo WT, Lee TC, Yu LC. Janus-faced bacterial regulation of epithelial cell death and survival: association with colon carcinogenesis. Mol Cell Oncol. 2015; 3:e1029064. DOI: 10.1080/23723556.2015.1029064. PMID: 27308544.
Article
108. Fukata M, Abreu MT. TLR4 signalling in the intestine in health and disease. Biochem Soc Trans. 2007; 35:1473–1478. PMID: 18031248.
Article
109. Yu LC, Wei SC, Ni YH. Interplay between the gut microbiota and epithelial innate signaling in colitis-associated colon carcinogenesis. Cancer Res Front. 2017; 3:1–28.
Article
110. Chen TL, Chen S, Wu HW, et al. Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog. 2013; 5:26. PMID: 23991642.
Article
111. Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog. 2010; 2:14. PMID: 21040540.
Article
112. Kalischuk LD, Inglis GD, Buret AG. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog. 2009; 1:2. PMID: 19338680.
Article
113. Denizot J, Sivignon A, Barreau F, et al. Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn's disease patients. Inflamm Bowel Dis. 2012; 18:294–304. PMID: 21688348.
Article
114. Lapointe TK, O'Connor PM, Jones NL, Menard D, Buret AG. Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during Helicobacter pylori infection. Cell Microbiol. 2010; 12:692–703. PMID: 20070312.
Article
115. Fedwick JP, Lapointe TK, Meddings JB, Sherman PM, Buret AG. Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect Immun. 2005; 73:7844–7852. PMID: 16299274.
Article
116. Wei SC, Yang-Yen HF, Tsao PN, et al. SHANK3 regulates intestinal barrier function through modulating ZO-1 expression through the PKCε-dependent pathway. Inflamm Bowel Dis. 2017; 23:1730–1740. PMID: 28906292.
Article
117. Salzman AL, Eaves-Pyles T, Linn SC, Denenberg AG, Szabó C. Bacterial induction of inducible nitric oxide synthase in cultured human intestinal epithelial cells. Gastroenterology. 1998; 114:93–102. PMID: 9428223.
Article
118. Negroni A, Colantoni E, Vitali R, et al. NOD2 induces autophagy to control AIEC bacteria infectiveness in intestinal epithelial cells. Inflamm Res. 2016; 65:803–813. PMID: 27335178.
Article
119. Huang FC. De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells. Gut Pathog. 2016; 8:5. PMID: 26893616.
Article
120. Lu C, Chen J, Xu HG, et al. MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1-mediated autophagy. Gastroenterology. 2014; 146:188–199. PMID: 24036151.
Article
Full Text Links
  • IR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr