Korean J Gastroenterol.  2023 Aug;82(2):56-62. 10.4166/kjg.2023.089.

Gut Microbiome and Colorectal Cancer

Affiliations
  • 1Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Colorectal cancer (CRC) is one of the most common cancers in Korea. A majority of CRCs are caused by progressive genomic alterations referred to as the adenoma-carcinoma sequence. The factors that may increase the risk of CRC include obesity and consumption of a high-fat diet, red meat, processed meat, and alcohol. Recently, the role of gut microbiota in the formation, progression and treatment of CRCs has been investigated in depth. An altered gut microbiota can drive carcinogenesis and cause the development of CRC. Studies have also shown the role of gut microbiota in the prevention of CRC and the impact of therapies involving gut microbiota on CRC. Herein, we summarize the current understanding of the role of the gut microbiota in the development of CRC and its therapeutic potential, including the prevention of CRC and in enhancing efficacy of chemotherapy and immunotherapy.

Keyword

Colorectal cancer; Microbiota; Probiotics; Fusobacterium nucleatum

Reference

1. Rubio CA. 2021; Two intertwined compartments coexisting in sporadic conventional colon adenomas. Intest Res. 19:12–20. DOI: 10.5217/ir.2019.00133. PMID: 32079382. PMCID: PMC7873396.
Article
2. Nguyen LH, Goel A, Chung DC. 2020; Pathways of colorectal carcinogenesis. Gastroenterology. 158:291–302. DOI: 10.1053/j.gastro.2019.08.059. PMID: 31622622. PMCID: PMC6981255.
Article
3. Song M, Chan AT, Sun J. 2020; Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 158:322–340. DOI: 10.1053/j.gastro.2019.06.048. PMID: 31586566. PMCID: PMC6957737.
4. Scott AJ, Alexander JL, Merrifield CA, et al. 2019; International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 68:1624–1632. DOI: 10.1136/gutjnl-2019-318556. PMID: 31092590. PMCID: PMC6709773.
Article
5. Castellarin M, Warren RL, Freeman JD, et al. 2012; Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22:299–306. DOI: 10.1101/gr.126516.111. PMID: 22009989. PMCID: PMC3266037.
Article
6. Feng Q, Liang S, Jia H, et al. 2015; Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 6:6528. DOI: 10.1038/ncomms7528. PMID: 25758642.
Article
7. Yu J, Feng Q, Wong SH, et al. 2017; Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 66:70–78. DOI: 10.1136/gutjnl-2015-309800. PMID: 26408641.
Article
8. Schmitt M, Greten FR. 2021; The inflammatory pathogenesis of colorectal cancer. Nat Rev Immunol. 21:653–667. DOI: 10.1038/s41577-021-00534-x. PMID: 33911231.
Article
9. Beaugerie L, Itzkowitz SH. 2015; Cancers complicating inflammatory bowel disease. N Engl J Med. 372:1441–1452. DOI: 10.1056/NEJMra1403718. PMID: 25853748.
Article
10. Wong SH, Zhao L, Zhang X, et al. 2017; Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 153:1621–1633.e6. DOI: 10.1053/j.gastro.2017.08.022. PMID: 28823860.
Article
11. Lee CH, Koh SJ, Radi ZA, Habtezion A. 2023; Animal models of inflammatory bowel disease: novel experiments for revealing pathogenesis of colitis, fibrosis, and colitis-associated colon cancer. Intest Res. 21:295–305. DOI: 10.5217/ir.2023.00029. PMID: 37248173. PMCID: PMC10397556.
Article
12. Gholizadeh P, Eslami H, Kafil HS. 2017; Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother. 89:918–925. DOI: 10.1016/j.biopha.2017.02.102. PMID: 28292019.
Article
13. Fung TC, Artis D, Sonnenberg GF. 2014; Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol Rev. 260:35–49. DOI: 10.1111/imr.12186. PMID: 24942680. PMCID: PMC4216679.
Article
14. Ou S, Wang H, Tao Y, et al. 2022; Fusobacterium nucleatum and colorectal cancer: From phenomenon to mechanism. Front Cell Infect Microbiol. 12:1020583. DOI: 10.3389/fcimb.2022.1020583. PMID: 36523635. PMCID: PMC9745098.
Article
15. Mima K, Cao Y, Chan AT, et al. 2016; Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol. 7:e200. DOI: 10.1038/ctg.2016.53. PMID: 27811909. PMCID: PMC5543402.
Article
16. Yang Y, Weng W, Peng J, et al. 2017; Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of MicroRNA-21. Gastroenterology. 152:851–866.e24. DOI: 10.1053/j.gastro.2016.11.018. PMID: 27876571. PMCID: PMC5555435.
Article
17. Kostic AD, Chun E, Robertson L, et al. 2013; Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14:207–215. DOI: 10.1016/j.chom.2013.07.007. PMID: 23954159. PMCID: PMC3772512.
Article
18. Chung L, Orberg ET, Geis AL, et al. 2018; Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 23:421. DOI: 10.1016/j.chom.2018.02.004. PMID: 29544099. PMCID: PMC6469393.
Article
19. Périchon B, Lichtl-Häfele J, Bergsten E, et al. 2022; Detection of streptococcus gallolyticus and four other crc-associated bacteria in patient stools reveals a potential "driver" role for enterotoxigenic bacteroides fragilis. Front Cell Infect Microbiol. 12:794391. DOI: 10.3389/fcimb.2022.794391. PMID: 35360109. PMCID: PMC8963412.
Article
20. Wu S, Rhee KJ, Albesiano E, et al. 2009; A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 15:1016–1022. DOI: 10.1038/nm.2015. PMID: 19701202. PMCID: PMC3034219.
Article
21. Puppa MJ, White JP, Sato S, Cairns M, Baynes JW, Carson JA. 2011; Gut barrier dysfunction in the Apc(Min/+) mouse model of colon cancer cachexia. Biochim Biophys Acta. 1812:1601–1606. DOI: 10.1016/j.bbadis.2011.08.010. PMID: 21914473. PMCID: PMC3205242.
Article
22. Wilson MR, Jiang Y, Villalta PW, et al. 2019; The human gut bacterial genotoxin colibactin alkylates DNA. Science. 363:eaar7785. DOI: 10.1126/science.aar7785. PMID: 30765538. PMCID: PMC6407708.
Article
23. Dubinsky V, Dotan I, Gophna U. 2020; Carriage of colibactin-producing bacteria and colorectal cancer risk. Trends Microbiol. 28:874–876. DOI: 10.1016/j.tim.2020.05.015. PMID: 32507544.
Article
24. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. 2012; Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 338:120–123. DOI: 10.1126/science.1224820. PMID: 22903521. PMCID: PMC3645302.
Article
25. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. 2020; Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 580:269–273. DOI: 10.1038/s41586-020-2080-8. PMID: 32106218. PMCID: PMC8142898.
26. Arthur JC, Gharaibeh RZ, Mühlbauer M, et al. 2014; Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 5:4724. DOI: 10.1038/ncomms5724. PMID: 25182170. PMCID: PMC4155410.
Article
27. Yang Y, Gharaibeh RZ, Newsome RC, Jobin C. 2020; Amending microbiota by targeting intestinal inflammation with TNF blockade attenuates development of colorectal cancer. Nat Cancer. 1:723–734. DOI: 10.1038/s43018-020-0078-7. PMID: 33768208. PMCID: PMC7990316.
Article
28. Wong SH, Kwong TNY, Chow TC, et al. 2017; Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. 66:1441–1448. DOI: 10.1136/gutjnl-2016-312766. PMID: 27797940. PMCID: PMC5530471.
Article
29. Flemer B, Warren RD, Barrett MP, et al. 2018; The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 67:1454–1463. DOI: 10.1136/gutjnl-2017-314814. PMID: 28988196. PMCID: PMC6204958.
Article
30. Komiya Y, Shimomura Y, Higurashi T, et al. 2019; Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut. 68:1335–1337. DOI: 10.1136/gutjnl-2018-316661. PMID: 29934439. PMCID: PMC6582823.
Article
31. Yachida S, Mizutani S, Shiroma H, et al. 2019; Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 25:968–976. DOI: 10.1038/s41591-019-0458-7. PMID: 31171880.
Article
32. Bosch S, Acharjee A, Quraishi MN, et al. 2022; Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer. Gut Microbes. 14:2139979. DOI: 10.1080/19490976.2022.2139979. PMID: 36369736. PMCID: PMC9662191.
Article
33. Dougherty MW, Jobin C. 2023; Intestinal bacteria and colorectal cancer: etiology and treatment. Gut Microbes. 15:2185028. DOI: 10.1080/19490976.2023.2185028. PMID: 36927206. PMCID: PMC10026918.
Article
34. Yu T, Guo F, Yu Y, et al. 2017; Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 170:548–563.e16. DOI: 10.1016/j.cell.2017.07.008. PMID: 28753429. PMCID: PMC5767127.
Article
35. Zorron Cheng Tao Pu L, Yamamoto K, Honda T, et al. 2020; Microbiota profile is different for early and invasive colorectal cancer and is consistent throughout the colon. J Gastroenterol Hepatol. 35:433–437. DOI: 10.1111/jgh.14868. PMID: 31609493.
Article
36. Mima K, Nishihara R, Qian ZR, et al. 2016; Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 65:1973–1980. DOI: 10.1136/gutjnl-2015-310101. PMID: 26311717. PMCID: PMC4769120.
Article
37. Iida N, Dzutsev A, Stewart CA, et al. 2013; Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970. DOI: 10.1126/science.1240527. PMID: 24264989. PMCID: PMC6709532.
Article
38. Machover D, Diaz-Rubio E, de Gramont A, et al. 1996; Two consecutive phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann Oncol. 7:95–98. DOI: 10.1093/oxfordjournals.annonc.a010489. PMID: 9081400.
Article
39. Wiseman LR, Adkins JC, Plosker GL, Goa KL. 1999; Oxaliplatin: a review of its use in the management of metastatic colorectal cancer. Drugs Aging. 14:459–475. DOI: 10.2165/00002512-199914060-00006. PMID: 10408744.
40. Hou XY, Zhang P, Du HZ, et al. 2021; Prevotella contributes to individual response of FOLFOX in colon cancer. Clin Transl Med. 11:e512. DOI: 10.1002/ctm2.512.
Article
41. Baldwin C, Millette M, Oth D, Ruiz MT, Luquet FM, Lacroix M. 2010; Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer. 62:371–378. DOI: 10.1080/01635580903407197. PMID: 20358475.
42. Bullman S, Pedamallu CS, Sicinska E, et al. 2017; Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 358:1443–1448. DOI: 10.1126/science.aal5240. PMID: 29170280. PMCID: PMC5823247.
Article
43. Dong X, Pan P, Zheng DW, Bao P, Zeng X, Zhang XZ. 2020; Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv. 6:eaba1590. DOI: 10.1126/sciadv.aba1590. PMID: 32440552. PMCID: PMC7228756.
Article
44. Baruch EN, Youngster I, Ben-Betzalel G, et al. 2021; Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 371:602–609. DOI: 10.1126/science.abb5920. PMID: 33303685.
Article
45. Sehgal K, Khanna S. 2021; Gut microbiome and checkpoint inhibitor colitis. Intest Res. 19:360–364. DOI: 10.5217/ir.2020.00116. PMID: 33249800. PMCID: PMC8566823.
Article
46. Wang Y, Wiesnoski DH, Helmink BA, et al. 2018; Fecal microbiota transplantation for refractory immune checkpoint inhibitorassociated colitis. Nat Med. 24:1804–1808. DOI: 10.1038/s41591-018-0238-9. PMID: 30420754. PMCID: PMC6322556.
Article
47. Katona BW, Weiss JM. 2020; Chemoprevention of colorectal cancer. Gastroenterology. 158:368–388. DOI: 10.1053/j.gastro.2019.06.047. PMID: 31563626. PMCID: PMC6981249.
Article
48. Zhao R, Coker OO, Wu J, et al. 2020; Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology. 159:969–983.e4. DOI: 10.1053/j.gastro.2020.05.004. PMID: 32387495.
Article
49. Wong CC, Yu J. 2023; Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 20:429–452. DOI: 10.1038/s41571-023-00766-x. PMID: 37169888.
Article
50. Kvakova M, Kamlarova A, Stofilova J, Benetinova V, Bertkova I. 2022; Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J Gastroenterol. 28:3370–3382. DOI: 10.3748/wjg.v28.i27.3370. PMID: 36158273. PMCID: PMC9346452.
Article
51. Dai Z, Coker OO, Nakatsu G, et al. 2018; Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 6:70. DOI: 10.1186/s40168-018-0451-2. PMID: 29642940. PMCID: PMC5896039.
Article
52. Del Carmen S, de Moreno de LeBlanc A, Levit R, et al. 2017; Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol. 42:122–129. DOI: 10.1016/j.intimp.2016.11.017. PMID: 27912148.
Article
53. Sugimura N, Li Q, Chu ESH, et al. 2021; Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut. 71:2011–2021. DOI: 10.1136/gutjnl-2020-323951. PMID: 34937766. PMCID: PMC9484392.
Article
54. Li Q, Hu W, Liu WX, et al. 2021; Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase. Gastroenterology. 160:1179–1193.e14. DOI: 10.1053/j.gastro.2020.09.003. PMID: 32920015.
Article
55. Osterlund P, Ruotsalainen T, Korpela R, et al. 2007; Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer. 97:1028–1034. DOI: 10.1038/sj.bjc.6603990. PMID: 17895895. PMCID: PMC2360429.
Article
56. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. 2015; Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 26:26191. DOI: 10.3402/mehd.v26.26191. PMID: 25651997. PMCID: PMC4315779.
Article
57. Kim SH, Lim YJ. 2022; The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intest Res. 20:31–42. DOI: 10.5217/ir.2021.00034. PMID: 34015206. PMCID: PMC8831768.
Article
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr