Anat Cell Biol.  2012 Dec;45(4):215-220. 10.5115/acb.2012.45.4.215.

Erythropoietin and autoimmune neuroinflammation: lessons from experimental autoimmune encephalomyelitis and experimental autoimmune neuritis

Affiliations
  • 1Department of Veterinary Anatomy, Veterinary Medical Research Institute, College of Veterinary Medicine, Jeju National University, Jeju, Korea. shint@jejunu.ac.kr
  • 2Department of Anatomy, College of Medicine, Jeju National University, Jeju, Korea.
  • 3Department of Veterinary Anatomy, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea.
  • 4Department of Veterinary Reproduction, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.

Abstract

Erythropoietin (EPO) is known to have numerous biological functions. While its primary function is during haematopoiesis, recent studies have shown that EPO plays important role in cytoprotection, immunomodulation, and antiapoptosis. These secondary functions of EPO are integral to tissue protection following hypoxic injury, ischemia-reperfusion injury, and spinal cord injury in the central nervous system. This review focuses on experimental evidence documenting the neuroprotective effects of EPO in organ-specific autoimmune nervous system disorders such as experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN). In addition, the immunomodulatory role of EPO in the pathogenesis of EAE and EAN animal models of human multiple sclerosis and Guillain-Barre syndrome, respectively, will be discussed.

Keyword

Autoimmune diseases; Erythropoietin; Experimental autoimmune neuritis; Encephalomyelitis; Neuroinflammation; Neuroprotection

MeSH Terms

Autoimmune Diseases
Central Nervous System
Cytoprotection
Encephalomyelitis
Encephalomyelitis, Autoimmune, Experimental
Erythropoietin
Guillain-Barre Syndrome
Hematopoiesis
Humans
Immunomodulation
Models, Animal
Multiple Sclerosis
Nervous System Diseases
Neuritis, Autoimmune, Experimental
Neuroprotective Agents
Reperfusion Injury
Spinal Cord Injuries
Erythropoietin
Neuroprotective Agents

Reference

1. Brines M, Cerami A. Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med. 2008. 264:405–432.
2. Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect. 2012. 14:238–246.
3. Sasaki R, Masuda S, Nagao M. Erythropoietin: multiple physiological functions and regulation of biosynthesis. Biosci Biotechnol Biochem. 2000. 64:1775–1793.
4. Velly L, Pellegrini L, Guillet B, Bruder N, Pisano P. Erythropoietin 2nd cerebral protection after acute injuries: a double-edged sword? Pharmacol Ther. 2010. 128:445–459.
5. van der Kooij MA, Groenendaal F, Kavelaars A, Heijnen CJ, van Bel F. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev. 2008. 59:22–33.
6. Matis GK, Birbilis TA. Erythropoietin in spinal cord injury. Eur Spine J. 2009. 18:314–323.
7. Patel NS, Nandra KK, Thiemermann C. Bench-to-bedside review: Erythropoietin and its derivatives as therapies in critical care. Crit Care. 2012. 16:229.
8. Chen SJ, Wang YL, Lo WT, Wu CC, Hsieh CW, Huang CF, Lan YH, Wang CC, Chang DM, Sytwu HK. Erythropoietin enhances endogenous haem oxygenase-1 and represses immune responses to ameliorate experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010. 162:210–223.
9. Agnello D, Bigini P, Villa P, Mennini T, Cerami A, Brines ML, Ghezzi P. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res. 2002. 952:128–134.
10. Mausberg AK, Meyer Zu, Hörste G, Dehmel T, Stettner M, Lehmann HC, Sheikh KA, Kieseier BC. Erythropoietin ameliorates rat experimental autoimmune neuritis by inducing transforming growth factor-beta in macrophages. PLoS One. 2011. 6:e26280.
11. Shin T, Ahn M, Matsumoto Y. Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: recent insights from macrophages. Anat Cell Biol. 2012. 45:141–148.
12. Wekerle H. Lessons from multiple sclerosis: models, concepts, observations. Ann Rheum Dis. 2008. 67:Suppl 3. iii56–iii60.
13. Kapadia M, Sakic B. Autoimmune and inflammatory mechanisms of CNS damage. Prog Neurobiol. 2011. 95:301–333.
14. Pierson E, Simmons SB, Castelli L, Goverman JM. Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev. 2012. 248:205–215.
15. Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, Brochet B, Canron MH, Franconi JM, Boiziau C, Petry KG. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler. 2011. 17:2–15.
16. Herz J, Zipp F, Siffrin V. Neurodegeneration in autoimmune CNS inflammation. Exp Neurol. 2010. 225:9–17.
17. Mansilla MJ, Montalban X, Espejo C. Heat shock protein 70: roles in multiple sclerosis. Mol Med. 2012. 18:1018–1028.
18. Kim H, Moon C, Ahn M, Byun J, Lee Y, Kim MD, Matsumoto Y, Koh CS, Shin T. Heat shock protein 27 upregulation and phosphorylation in rat experimental autoimmune encephalomyelitis. Brain Res. 2009. 1304:155–163.
19. Shin T. Osteopontin as a two-sided mediator in acute neuroinflammation in rat models. Acta Histochem. 2012. 114:749–754.
20. Kang SY, Kang JH, Choi JC, Lee JS, Lee CS, Shin T. Expression of erythropoietin in the spinal cord of lewis rats with experimental autoimmune encephalomyelitis. J Clin Neurol. 2009. 5:39–45.
21. Lu MO, Zhu J. The role of cytokines in Guillain-Barré syndrome. J Neurol. 2011. 258:533–548.
22. Hahn AF. Experimental allergic neuritis (EAN) as a model for the immune-mediated demyelinating neuropathies. Rev Neurol (Paris). 1996. 152:328–332.
23. Ahn M, Moon C, Lee Y, Koh CS, Kohyama K, Tanuma N, Matsumoto Y, Kim HM, Kim SR, Shin T. Activation of extracellular signal-regulated kinases in the sciatic nerves of rats with experimental autoimmune neuritis. Neurosci Lett. 2004. 372:57–61.
24. Lee Y, Shin T. Expression of constitutive endothelial and inducible nitric oxide synthase in the sciatic nerve of Lewis rats with experimental autoimmune neuritis. J Neuroimmunol. 2002. 126:78–85.
25. Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R, Lehman N, Deans RJ, Ting AE, Mays RW, Silver J. Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci. 2011. 31:944–953.
26. Farrell F, Lee A. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist. 2004. 9:Suppl 5. 18–30.
27. Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ. The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol. 2008. 67:39–61.
28. Ellrichmann G, Thöne J, Lee DH, Rupec RA, Gold R, Linker RA. Constitutive activity of NF-kappa B in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation. J Neuroinflammation. 2012. 9:15.
29. Hwang I, Ha D, Ahn G, Park E, Joo H, Jee Y. Experimental autoimmune encephalomyelitis: association with mutual regulation of RelA (p65)/NF-kappaB and phospho-IkappaB in the CNS. Biochem Biophys Res Commun. 2011. 411:464–470.
30. Moon C, Kim S, Wie M, Kim H, Cheong J, Park J, Jee Y, Tanuma N, Matsumoto Y, Shin T. Increased expression of p53 and Bax in the spinal cords of rats with experimental autoimmune encephalomyelitis. Neurosci Lett. 2000. 289:41–44.
31. Wang S, Yan C, Xu H, Zhao X, Han Y. Suppression of encephalitogenic T-cell responses by cilostazol is associated with upregulation of regulatory T-cells. Neuroreport. 2010. 21:629–635.
32. Ishii H, Jin X, Ueno M, Tanabe S, Kubo T, Serada S, Naka T, Yamashita T. Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury. Cell Death Dis. 2012. 3:e363.
33. Sheremata WA, Minagar A, Alexander JS, Vollmer T. The role of alpha-4 integrin in the aetiology of multiple sclerosis: current knowledge and therapeutic implications. CNS Drugs. 2005. 19:909–922.
34. Liu Y, Teige I, Birnir B, Issazadeh-Navikas S. Neuron-mediated generation of regulatory T-cells from encephalitogenic T-cells suppresses EAE. Nat Med. 2006. 12:518–525.
35. Mengozzi M, Cervellini I, Bigini P, Martone S, Biondi A, Pedotti R, Gallo B, Barbera S, Mennini T, Boraso M, Marinovich M, Petit E, Bernaudin M, Bianchi R, Viviani B, Ghezzi P. Endogenous erythropoietin as part of the cytokine network in the pathogenesis of experimental autoimmune encephalomyelitis. Mol Med. 2008. 14:682–688.
36. Ahn M, Moon C, Jeong C, Matsumoto Y, Koh CS, Shin T. Upregulation of erythropoietin in rat peripheral nervous system with experimental autoimmune neuritis. Brain Res. 2010. 1333:82–90.
37. Yuan R, Maeda Y, Li W, Lu W, Cook S, Dowling P. Erythropoietin: a potent inducer of peripheral immuno/inflammatory modulation in autoimmune EAE. PLoS One. 2008. 3:e1924.
38. Savino C, Pedotti R, Baggi F, Ubiali F, Gallo B, Nava S, Bigini P, Barbera S, Fumagalli E, Mennini T, Vezzani A, Rizzi M, Coleman T, Cerami A, Brines M, Ghezzi P, Bianchi R. Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. J Neuroimmunol. 2006. 172:27–37.
39. Zhang X, Li QY, Xiao BG. Anti-inflammatory effect of erythropoietin therapy on experimental autoimmune encephalomyelitis. Int J Neurosci. 2012. 122:255–262.
40. Genc K, Egrilmez MY, Genc S. Erythropoietin induces nuclear translocation of Nrf2 and heme oxygenase-1 expression in SH-SY5Y cells. Cell Biochem Funct. 2010. 28:197–201.
41. Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev. 2009. 61:310–318.
42. Blancou P, Tardif V, Simon T, Rémy S, Carreño L, Kalergis A, Anegon I. Immunoregulatory properties of heme oxygenase-1. Methods Mol Biol. 2011. 677:247–268.
43. Wunder C, Potter RF. The heme oxygenase system: its role in liver inflammation. Curr Drug Targets Cardiovasc Haematol Disord. 2003. 3:199–208.
44. Diem R, Sättler MB, Bähr M. Neurodegeneration and -protection in autoimmune CNS inflammation. J Neuroimmunol. 2007. 184:27–36.
45. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol. 2004. 251:261–268.
46. Jin W, Kong J, Lu T, Wang H, Ni H, Wu J, Dai Y, Jiang J, Liang W. Erythropoietin prevents secondary brain injury induced by cortical lesion in mice: possible involvement of Nrf2 signaling pathway. Ann Clin Lab Sci. 2011. 41:25–32.
47. Zhang J, Zhu Y, Zhou D, Wang Z, Chen G. Recombinant human erythropoietin (rhEPO) alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Nrf2-ARE pathway. Cytokine. 2010. 52:252–257.
48. Jazwa A, Cuadrado A. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets. 2010. 11:1517–1531.
49. Cuadrado A, Rojo AI. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des. 2008. 14:429–442.
50. Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, Grasso G, Corica F, Frisina N. Erythropoietin and the brain: from neurodevelopment to neuroprotection. Clin Sci (Lond). 2002. 103:275–282.
51. Genc S, Koroglu TF, Genc K. Erythropoietin and the nervous system. Brain Res. 2004. 1000:19–31.
52. Minnerup J, Heidrich J, Rogalewski A, Schäbitz WR, Wellmann J. The efficacy of erythropoietin and its analogues in animal stroke models: a meta-analysis. Stroke. 2009. 40:3113–3120.
53. Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N. TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012. 13:31.
54. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008. 13:453–461.
55. Ahn M, Yang W, Kim H, Jin JK, Moon C, Shin T. Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res. 2012. 1453:77–86.
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr