Clin Nutr Res.  2016 Apr;5(2):126-136. 10.7762/cnr.2016.5.2.126.

The Level of Serum Cholesterol is Negatively Associated with Lean Body Mass in Korean non-Diabetic Cancer Patients

Affiliations
  • 1Department of Food and Nutrition, Daegu University, Gyeongsan 38453, Korea. busy@daegu.ac.kr

Abstract

Due to poor nutrition and abnormal energy metabolism, cancer patients typically experience the loss of muscle mass. Although the diabetic conditions or dyslipidemia have been reported as a causal link of cancer but the consequence of such conditions in relation to gain or loss of skeletal muscle mass in cancer patients has not been well documented. The purpose of this study was to investigate the relationship of lean body mass and systemic parameters related to lipid metabolism in non-diabetic cancer patients using data from the Korean National Health and Nutrition Examination Survey (KNHANES) 2008-2011. As results the level of serum total cholesterol (total-C) was negatively associated with both total lean body mass and appendicular lean body mass in cancer patients after adjustment for sex, physical activity, energy intake and comorbidity. The associations between consumption of dietary factors (energy, carbohydrate, protein and fat) and lean body mass were disappeared after adjusting comorbidities of cancer patients. Multivariate-adjusted linear regression analysis by quartiles of serum total-C showed that higher quartile group of total-C had significantly lower percent of lean body mass than reference group in cancer patients. The data indicate that serum lipid status can be the potential estimate of loss of skeletal muscle mass in cancer patients and be referenced in nutrition care of cancer patients under the onset of cachexia or parenteral/enteral nutrition. This data need to be confirmed with large pool of subjects and should be specified by stage of cancer or the site of cancer in future studies.

Keyword

Cancer; Skeletal muscle; Diabetes; Lipids

MeSH Terms

Cachexia
Cholesterol*
Comorbidity
Dyslipidemias
Energy Intake
Energy Metabolism
Humans
Linear Models
Lipid Metabolism
Motor Activity
Muscle, Skeletal
Nutrition Surveys
Cholesterol

Cited by  2 articles

A Vegetable and Fish Dietary Pattern Is Positively Associated with Skeletal Muscle Mass in Korean Men
Bo Young Jang, So Young Bu
Clin Nutr Res. 2019;8(1):1-16.    doi: 10.7762/cnr.2019.8.1.1.

Total energy intake according to the level of skeletal muscle mass in Korean adults aged 30 years and older: an analysis of the Korean National Health and Nutrition Examination Surveys (KNHANES) 2008–2011
Bo Young Jang, So Young Bu
Nutr Res Pract. 2018;12(3):222-232.    doi: 10.4162/nrp.2018.12.3.222.


Reference

1. Moses KA, Abd TT, Goodman M, Hsiao W, Hall JA, Marshall FF, Petros JA, Issa MM. Increased low density lipoprotein and increased likelihood of positive prostate biopsy in black americans. J Urol. 2009; 182:2219–2225.
Article
2. Tada H, Kawashiri MA, Nakahashi T, Yagi K, Chujo D, Ohbatake A, Mori Y, Mori S, Kometani M, Fujii H, Nohara A, Inazu A, Mabuchi H, Yamagishi M, Hayashi K. Clinical characteristics of Japanese patients with severe hypertriglyceridemia. J Clin Lipidol. 2015; 9:519–524.
Article
3. Bell KE, Di Sebastiano KM, Vance V, Hanning R, Mitchell A, Quadrilatero J, Russell C, Dubin JA, Bahl M, Califaretti N, Campbell C, Mourtzakis M. A comprehensive metabolic evaluation reveals impaired glucose metabolism and dyslipidemia in breast cancer patients early in the disease trajectory. Clin Nutr. 2014; 33:550–557.
Article
4. Touvier M, Fassier P, His M, Norat T, Chan DS, Blacher J, Hercberg S, Galan P, Druesne-Pecollo N, Latino-Martel P. Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies. Br J Nutr. 2015; 114:347–357.
Article
5. Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, Maerker E, Matthaei S, Schick F, Claussen CD, Häring HU. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999; 48:1113–1119.
Article
6. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002; 51:2005–2011.
Article
7. De Pergola G, Giorgino F, Benigno R, Guida P, Giorgino R. Independent influence of insulin, catecholamines, and thyroid hormones on metabolic syndrome. Obesity (Silver Spring). 2008; 16:2405–2411.
Article
8. Kalyani RR, Tra Y, Yeh HC, Egan JM, Ferrucci L, Brancati FL. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: results from the National Health and Nutrition Examination Survey, 1999-2002. J Am Geriatr Soc. 2013; 61:769–775.
Article
9. Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, Everson-Rose SA, Barrett-Connor E, Orwoll ES. Osteoporotic Fractures in Men Study Research Group. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011; 59:1217–1224.
Article
10. Lee CG, Boyko EJ, Barrett-Connor E, Miljkovic I, Hoffman AR, Everson-Rose SA, Lewis CE, Cawthon PM, Strotmeyer ES, Orwoll ES. Osteoporotic Fractures in Men (MrOS) Study Research Group. Insulin sensitizers may attenuate lean mass loss in older men with diabetes. Diabetes Care. 2011; 34:2381–2386.
Article
11. Prado CM, Lieffers JR, Bowthorpe L, Baracos VE, Mourtzakis M, McCargar LJ. Sarcopenia and physical function in overweight patients with advanced cancer. Can J Diet Pract Res. 2013; 74:69–74.
Article
12. Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007; 36:228–235.
Article
13. Tsoli M, Swarbrick MM, Robertson GR. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia. Semin Cell Dev Biol. 2015; Forthcoming.
Article
14. Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2013; 10:90–99.
Article
15. Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab. 2014; 25:255–262.
Article
16. Korea Centers for Disease Control and Prevention. Guidelines for utilization of raw data from the fifth Korea National Health and Nutrition Examination Survey (2010-2012). Cheongwon: Korea Centers for Disease Control and Prevention;2013.
17. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol. 2014; 43:69–77.
Article
18. Joo NS, Dawson-Hughes B, Kim YS, Oh K, Yeum KJ. Impact of calcium and vitamin D insufficiencies on serum parathyroid hormone and bone mineral density: analysis of the fourth and fifth Korea National Health and Nutrition Examination Survey (KNHANES IV-3, 2009 and KNHANES V-1, 2010). J Bone Miner Res. 2013; 28:764–770.
Article
19. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002; 50:889–896.
Article
20. Rural Development Administration (KR). Food composition table. 7th ed. Suwon: Rural Development Administration;2006.
21. Bouchard DR, Dionne IJ, Brochu M. Sarcopenic/obesity and physical capacity in older men and women: data from the Nutrition as a Determinant of Successful Aging (NuAge)-the Quebec longitudinal Study. Obesity (Silver Spring). 2009; 17:2082–2088.
Article
22. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010; 39:412–423.
Article
23. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006; 61:72–77.
Article
24. Cosquéric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006; 96:895–901.
Article
25. Dodson S, Baracos VE, Jatoi A, Evans WJ, Cella D, Dalton JT, Steiner MS. Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies. Annu Rev Med. 2011; 62:265–279.
Article
26. Denison HJ, Cooper C, Sayer AA, Robinson SM. Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging. 2015; 10:859–869.
27. Waters DL, Baumgartner RN, Garry PJ, Vellas B. Advantages of dietary, exercise-related, and therapeutic interventions to prevent and treat sarcopenia in adult patients: an update. Clin Interv Aging. 2010; 5:259–270.
Article
28. Platz EA, Till C, Goodman PJ, Parnes HL, Figg WD, Albanes D, Neuhouser ML, Klein EA, Thompson IM Jr, Kristal AR. Men with low serum cholesterol have a lower risk of high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev. 2009; 18:2807–2813.
Article
29. Solomon KR, Freeman MR. Do the cholesterol-lowering properties of statins affect cancer risk? Trends Endocrinol Metab. 2008; 19:113–121.
Article
30. Mondul AM, Clipp SL, Helzlsouer KJ, Platz EA. Association between plasma total cholesterol concentration and incident prostate cancer in the CLUE II cohort. Cancer Causes Control. 2010; 21:61–68.
Article
31. López-Soriano J, Argilés JM, López-Soriano FJ. Sequential changes in lipoprotein lipase activity and lipaemia induced by the Yoshida AH-130 ascites hepatoma in rats. Cancer Lett. 1997; 116:159–165.
Article
32. Notarnicola M, Miccolis A, Tutino V, Lorusso D, Caruso MG. Low levels of lipogenic enzymes in peritumoral adipose tissue of colorectal cancer patients. Lipids. 2012; 47:59–63.
Article
33. Rydén M, Agustsson T, Laurencikiene J, Britton T, Sjölin E, Isaksson B, Permert J, Arner P. Lipolysis--not inflammation, cell death, or lipogenesis--is involved in adipose tissue loss in cancer cachexia. Cancer. 2008; 113:1695–1704.
Article
34. Dahlman I, Mejhert N, Linder K, Agustsson T, Mutch DM, Kulyte A, Isaksson B, Permert J, Petrovic N, Nedergaard J, Sjölin E, Brodin D, Clement K, Dahlman-Wright K, Rydén M, Arner P. Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer. 2010; 102:1541–1548.
Article
35. Barbat-Artigas S, Plouffe S, Pion CH, Aubertin-Leheudre M. Toward a sex-specific relationship between muscle strength and appendicular lean body mass index? J Cachexia Sarcopenia Muscle. 2013; 4:137–144.
Article
36. Tsoli M, Robertson G. Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem. Trends Endocrinol Metab. 2013; 24:174–183.
Article
37. Wigmore SJ, Plester CE, Richardson RA, Fearon KC. Changes in nutritional status associated with unresectable pancreatic cancer. Br J Cancer. 1997; 75:106–109.
Article
38. Wigmore SJ, Ross JA, Falconer JS, Plester CE, Tisdale MJ, Carter DC, Fearon KC. The effect of polyunsaturated fatty acids on the progress of cachexia in patients with pancreatic cancer. Nutrition. 1996; 12:S27–S30.
Article
39. Esper DH, Harb WA. The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract. 2005; 20:369–376.
Article
40. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, Cohen MH, Douglass HO Jr, Engstrom PF, Ezdinli EZ, Horton J, Johnson GJ, Moertel CG, Oken MM, Perlia C, Rosenbaum C, Silverstein MN, Skeel RT, Sponzo RW, Tormey DC. Eastern Cooperative Oncology Group. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Am J Med. 1980; 69:491–497.
Article
Full Text Links
  • CNR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr