Lab Anim Res.  2015 Jun;31(2):47-68. 10.5625/lar.2015.31.2.47.

Spontaneous and transgenic rodent models of inflammatory bowel disease

Affiliations
  • 1Department of Agriculture, Faculty of Agriculture and Food Science, American University of Beirut, Beirut, Lebanon. sp07@aub.edu.lb
  • 2Department of Anatomy, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.

Abstract

Inflammatory Bowel Disease (IBD) is a multifactorial disorder with many different putative influences mediating disease onset, severity, progression and diminution. Spontaneous natural IBD is classically expressed as Crohn's Disease (CD) and Ulcerative Colitis (UC) commonly found in primates; lymphoplasmocytic enteritis, eosinophilic gastritis and colitis, and ulcerative colitis with neuronal hyperplasia in dogs; and colitis in horses. Spontaneous inflammatory bowel disease has been noted in a number of rodent models which differ in genetic strain background, induced mutation, microbiota influences and immunopathogenic pathways. Histological lesions in Crohn's Disease feature noncaseating granulomatous inflammation while UC lesions typically exhibit ulceration, lamina propria inflammatory infiltrates and lack of granuloma development. Intestinal inflammation caused by CD and UC is also associated with increased incidence of intestinal neoplasia. Transgenic murine models have determined underlying etiological influences and appropriate therapeutic targets in IBD. This literature review will discuss current opinion and findings in spontaneous IBD, highlight selected transgenic rodent models of IBD and discuss their respective pathogenic mechanisms. It is very important to provide accommodation of induced putative deficits in activities of daily living and to assess discomfort and pain levels in the face of significant morbidity and/or mortality in these models. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis, and evaluating ways in which they influence disease expression represent potential investigative approaches with the greatest potential for new discoveries.

Keyword

Transgenic rodent models; intestinal microbiota; IBD

MeSH Terms

Activities of Daily Living
Animals
Colitis
Colitis, Ulcerative
Crohn Disease
Dogs
Enteritis
Eosinophils
Epigenomics
Gastritis
Granuloma
Horses
Hyperplasia
Incidence
Inflammation
Inflammatory Bowel Diseases*
Microbiota
Mortality
Mucous Membrane
Negotiating
Neurons
Primates
Rodentia*
Ulcer

Cited by  1 articles

Ensuring reproducibility and ethics in animal experiments reporting in Korea using the ARRIVE guideline
Mi-Hyun Nam, Myung-Sun Chun, Je-Kyung Seong, Hoon-Gi Kim
Lab Anim Res. 2018;34(1):11-19.    doi: 10.5625/lar.2018.34.1.11.


Reference

1. Beatty PL. MUC1 in the relationship between inflammation and cancer in IBD. Dissertation. University of Pittsburgh;2006.
2. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010; 28:573–621. PMID: 20192811.
Article
3. Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol. 2013; 8:477–512. PMID: 23157335.
Article
4. Tomasello G, Tralongo P, Damiani P, Sinagra E, Di Trapani B, Zeenny MN, Hussein IH, Jurjus A, Leone A. Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes. World J Gastroenterol. 2014; 20(48):18121–18130. PMID: 25561781.
Article
5. Hajj-Hussein IA, Jurjus R, Saliba J, Ghanem S, Diab R, Bou Assi T, Daouk H, Leone A, Jurjus A. Modulation of Beta2 and Beta3 integrins in experimental colitis induced by iodoacetamide and enteropathogenic E. coli. J Biol Regul Homeost Agents. 2013; 27(2):351–363. PMID: 23830386.
6. Khanna PV, Shih DQ, Haritunians T, McGovern DP, Targan S. Use of animal models in elucidating disease pathogenesis in IBD. Semin Immunopathol. 2014; 36(5):541–551. PMID: 25212688.
Article
7. Li Y, de Haar C, Chen M, Deuring J, Gerrits MM, Smits R, Xia B, Kuipers EJ, van der Woude CJ. Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut. 2010; 59(2):227–235. PMID: 19926618.
Article
8. Monteleone G, Pallone F, Stolfi C. The dual role of inflammation in colon carcinogenesis. Int J Mol Sci. 2012; 13(9):11071–11084. PMID: 23109839.
Article
9. Neurath MF. Animal models of inflammatory bowel diseases: illuminating the pathogenesis of colitis, ileitis and cancer. Dig Dis. 2012; 30:91–94. PMID: 23075875.
Article
10. Kolodziejska-Sawerska A, Rychlik A, Depta A, Wdowiak M, Nowicki M, Kander M. Cytokines in canine inflammatory bowel disease. Pol J Vet Sci. 2013; 16(1):165–171. PMID: 23691593.
11. Wdowiak M, Rychlik A, Kołodziejska-Sawerska A. Biomarkers in canine inflammatory bowel disease diagnostics. Pol J Vet Sci. 2013; 16(3):601–610. PMID: 24195302.
Article
12. García-Sancho M, Rodríguez-Franco F, Sainz A, Mancho C, Rodríguez A. Evaluation of clinical, macroscopic, and histopathologic response to treatment in nonhypoproteinemic dogs with lymphocytic-plasmacytic enteritis. J Vet Intern Med. 2007; 21(1):11–17. PMID: 17338144.
13. Day MJ, Bilzer T, Mansell J, Wilcock B, Hall EJ, Jergens A, Minami T, Willard M, Washabau R. World Small Animal Veterinary Association Gastrointestinal Standardization Group. Histopathological standards for the diagnosis of gastrointestinal inflammation in endoscopic biopsy samples from the dog and cat: a report from the World Small Animal Veterinary Association Gastrointestinal Standardization Group. J Comp Pathol. 2008; 138:S1–S43. PMID: 18336828.
Article
14. Whitley NT, Day MJ. Immunomodulatory drugs and their application to the management of canine immune-mediated disease. J Small Anim Pract. 2011; 52(2):70–85. PMID: 21265846.
Article
15. Kaikkonen R, Niinistö K1, Sykes B, Anttila M, Sankari S, Raekallio M. Diagnostic evaluation and short-term outcome as indicators of long-term prognosis in horses with findings suggestive of inflammatory bowel disease treated with corticosteroids and anthelmintics. Acta Vet Scand. 2014; 56:35. PMID: 24894126.
Article
16. Kanthaswamy S, Elfenbein HA, Ardeshir A, Ng J, Hyde D, Smith DG, Lerche N. Familial aggregation of chronic diarrhea disease (CDD) in rhesus macaques (Macaca mulatta). Am J Primatol. 2014; 76(3):262–270. PMID: 24532180.
Article
17. Over K, Crandall PG, O'Bryan CA, Ricke SC. Current perspectives on Mycobacterium avium subsp. paratuberculosis, Johne's disease, and Crohn's disease: a review. Crit Rev Microbiol. 2011; 37(2):141–156. PMID: 21254832.
18. Jurjus AR, Khoury NN, Reimund JM. Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods. 2004; 50(2):81–92. PMID: 15385082.
Article
19. Khan J, Islam MN. Morphology of the intestinal barrier in different physiological and pathological conditions. Histopathology-Reviews and Recent Advances. Rijeka, Croatia: Intech Publishers;2012. p. 133–152.
20. Reimund JM, Tavernier M, Viennot S, Hajj Hussein IA, Dupont B, Justum A-PM, Jurus AR, Freund JN, Lechevrel M. Ulcerative colitis-associated colorectal cancer prevention by 5-Aminosalicylates: current status and perspectives. Rijeka, Croatia: Intech Publishers;www.inotechopen.com.
21. DeVoss J, Diehl L. Murine models of inflammatory bowel disease (IBD): challenges of modeling human disease. Toxicol Pathol. 2014; 42(1):99–110. PMID: 24231829.
22. Pizarro TT, Arseneau KO, Cominelli F. Lessons from genetically engineered animal models XI. Novel mouse models to study pathogenic mechanisms of Crohn's disease. Am J Physiol Gastrointest Liver Physiol. 2000; 278(5):G665–G669. PMID: 10801257.
23. Goretsky T, Dirisina R, Sinh P, Mittal N, Managlia E, Williams DB, Posca D, Ryu H, Katzman RB, Barrett TA. p53 mediates TNF-induced epithelial cell apoptosis in IBD. Am J Pathol. 2012; 181(4):1306–1315. PMID: 22863952.
Article
24. Li Z, Arijs I, De Hertogh G, Vermeire S, Noman M, Bullens D, Coorevits L, Sagaert X, Schuit F, Rutgeerts P, Ceuppens JL, Van Assche G. Reciprocal changes of Foxp3 expression in blood and intestinal mucosa in IBD patients responding to infliximab. Inflamm Bowel Dis. 2010; 16(8):1299–1310. PMID: 20196149.
Article
25. Abraham C, Cho JH. IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu Rev Med. 2009; 60:97–110. PMID: 18976050.
Article
26. Gilbert S, Zhang R, Denson L, Moriggl R, Steinbrecher K, Shroyer N, Lin J, Han X. Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinasemediated loss of barrier function and inflammation. EMBO Mol Med. 2012; 4(2):109–124. PMID: 22228679.
Article
27. Gad M. Regulatory T cells in experimental colitis. Curr Top Microbiol Immunol. 2005; 293:179–208. PMID: 15981481.
Article
28. Mizoguchi A, Andoh A. Animal models of inflammatory bowel disease for drug discovery. Chapter 22. Animal Models of the Study of Human Disease. Elsevier Publishers;2013. p. 499–527.
29. Parlato M, Yeretssian G2. NOD-like receptors in intestinal homeostasis and epithelial tissue repair. Int J Mol Sci. 2014; 15(6):9594–9627. PMID: 24886810.
Article
30. Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol. 2006; 6(1):9–20. PMID: 16493424.
Article
31. Denzel A, Horejsi V, Hayday A. The 5th EFIS Tatra Immunology Conference on 'Molecular determinants of T cell immunity' held in the High Tatra Mountains, Slovakia, September 7-11, 2002. Immunol Lett. 2003; 86(1):1–6. PMID: 12600738.
Article
32. Hajj Hussein IA, Tohme R, Barada K, Mostafa MH, Freund JN, Jurjus RA, Karam W, Jurjus A. Inflammatory bowel disease in rats: bacterial and chemical interaction. World J Gastroenterol. 2008; 14(25):4028–4039. PMID: 18609687.
33. Mizoguchi A, Mizoguchi E. Animal models of IBD: linkage to human disease. Curr Opin Pharmacol. 2010; 10(5):578–587. PMID: 20860919.
Article
34. Lee JC, Parkes M. 100 genes for IBD...whatever next!? Inflamm Bowel Dis. 2011; 11(3):103–111.
35. Cho JH, Abraham C. Inflammatory bowel disease genetics: Nod2. Annu Rev Med. 2007; 58:401–416. PMID: 16987083.
Article
36. Inohara , Chamaillard , McDonald C, Nuñez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem. 2005; 74:355–383. PMID: 15952891.
Article
37. Palacios-Rodríguez Y, García-Laínez G, Sancho M, Gortat A, Orzáez M, Pérez-Payá E. Polypeptide modulators of caspase recruitment domain (CARD)-CARD-mediated protein-protein interactions. J Biol Chem. 2011; 286(52):44457–44466. PMID: 22065589.
Article
38. Wilmanski JM, Petnicki-Ocwieja T, Kobayashi KS. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. J Leukoc Biol. 2008; 83(1):13–30. PMID: 17875812.
Article
39. Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ. Recognition of fungal pathogens by Toll-like receptors. Eur J Clin Microbiol Infect Dis. 2004; 23(9):672–676. PMID: 15322932.
Article
40. Oshiumi H, Matsuo A, Matsumoto M, Seya T. Pan-vertebrate toll-like receptors during evolution. Curr Genomics. 2008; 9(7):488–493. PMID: 19506737.
Article
41. Hallman M, Rämet M, Ezekowitz RA. Toll-like receptors as sensors of pathogens. Pediatr Res. 2001; 50(3):315–321. PMID: 11518816.
Article
42. Carty M, Bowie AG. Recent insights into the role of Toll-like receptors in viral infection. Clin Exp Immunol. 2010; 161(3):397–406. PMID: 20560984.
Article
43. Li P, Neubig RR, Zingarelli B, Borg K, Halushka PV, Cook JA, Fan H. Toll-like receptor-induced inflammatory cytokines are suppressed by gain of function or overexpression of Gα(i2) protein. Inflammation. 2012; 35(5):1611–1617. PMID: 22581266.
44. Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis. 2012; 35(2):81–92. PMID: 22257867.
Article
45. Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev. 2007; 59(11):1073–1083. PMID: 17825455.
Article
46. Goyal N, Rana A, Ahlawat A, Bijjem KR, Kumar P. Animal models of inflammatory bowel disease: a review. Inflammopharmacology. 2014; 22(4):219–233. PMID: 24906689.
Article
47. Bilsborough J, Viney JL. From model to mechanism: lessons of mice and men in the discovery of protein biologicals for the treatment of inflammatory bowel disease. Expert Opin Drug Discov. 2006; 1(1):69–83. PMID: 23506033.
Article
48. Siddiqui KR, Laffont S, Powrie F. E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity. 2010; 32(4):557–567. PMID: 20399121.
Article
49. Bassaganya-Riera J, DiGuardo M, Climent M, Vives C, Carbo A, Jouni ZE, Einerhand AW, O'Shea M, Hontecillas R. Activation of PPARγ and δ by dietary punicic acid ameliorates intestinal inflammation in mice. Br J Nutr. 2011; 106(6):878–886. PMID: 21736821.
Article
50. Nguyen DD, Esteon MA, Muthyupalani S, Mobley MW, Potter AF, Taylor NS, Snapper SB, Fox JG. T1792 Helicobacter is Required for Colitis in WASP-Deficient Mice and Induces Colon Cancer. Gastroenterology. 2010; 138(5):Suppl 1. S579–S580.
Article
51. Hahm KB, Im YH, Parks TW, Park SH, Markowitz S, Jung HY, Green J, Kim SJ. Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut. 2001; 49(2):190–198. PMID: 11454793.
52. Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU, Kim MW, Ahn BO, Oh TY, Lee MH, Green J, Kim SJ. Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther. 2002; 16(Suppl 2):115–127. PMID: 11966532.
53. Seamons A, Treuting PM, Brabb T, Maggio-Price L. Characterization of dextran sodium sulfate-induced inflammation and colonic tumorigenesis in Smad3(-/-) mice with dysregulated TGFβ. PLoS One. 2013; 8(11):e79182. PMID: 24244446.
Article
54. Kang SS, Bloom SM, Norian LA, Geske MJ, Flavell RA, Stappenbeck TS, Allen PM. An antibiotic-responsive mouse model of fulminant ulcerative colitis. PLoS Med. 2008; 5(3):e41. PMID: 18318596.
Article
55. Spencer SD, Di Marco F, Hooley J, Pitts-Meek S, Bauer M, Ryan AM, Sordat B, Gibbs VC, Aguet M. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med. 1998; 187(4):571–578. PMID: 9463407.
Article
56. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991; 10(13):4025–4031. PMID: 1721867.
Article
57. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 1999; 10(3):387–398. PMID: 10204494.
58. Kontoyiannis D, Boulougouris G, Manoloukos M, Armaka M, Apostolaki M, Pizarro T, Kotlyarov A, Forster I, Flavell R, Gaestel M, Tsichlis P, Cominelli F, Kollias G. Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn's-like inflammatory bowel disease. J Exp Med. 2002; 196(12):1563–1574. PMID: 12486099.
Article
59. Hale LP, Greer PK. A novel murine model of inflammatory bowel disease and inflammation-associated colon cancer with ulcerative colitis-like features. PLoS One. 2012; 7(7):e41797. PMID: 22848611.
Article
60. Strober W, Nakamura K, Kitani A. The SAMP1/Yit mouse: another step closer to modeling human inflammatory bowel disease. J Clin Invest. 2001; 107(6):667–670. PMID: 11254665.
Article
61. Mitsuyama K, Matsumoto S, Rose-John S, Suzuki A, Hara T, Tomiyasu N, Handa K, Tsuruta O, Funabashi H, Scheller J, Toyonaga A, Sata M. STAT3 activation via interleukin 6 transsignalling contributes to ileitis in SAMP1/Yit mice. Gut. 2006; 55(9):1263–1269. PMID: 16682432.
Article
62. Pizarro TT, Pastorelli L, Bamias G, Garg RR, Reuter BK, Mercado JR, Chieppa M, Arseneau KO, Ley K, Cominelli F. SAMP1/YitFc mouse strain: a spontaneous model of Crohn's disease-like ileitis. Inflamm Bowel Dis. 2011; 17(12):2566–2584. PMID: 21557393.
Article
63. Mueller C. Tumour necrosis factor in mouse models of chronic intestinal inflammation. Immunology. 2002; 105(1):1–8. PMID: 11849309.
Article
64. Williams HR, Cox IJ, Walker DG, Cobbold JF, Taylor-Robinson SD, Marshall SE, Orchard TR. Differences in gut microbial metabolism are responsible for reduced hippurate synthesis in Crohn's disease. BMC Gastroenterol. 2010; 10:108. PMID: 20849615.
Article
65. Nguyen DD, Esteon MA, Muthyupalani S, Mobley MW, Potter AF, Taylor NS, Snapper SB, Fox JG. T1792 Helicobacter is Required for Colitis in WASP-Deficient Mice and Induces Colon Cancer. Gastroenterology. 2010; 138(5):Suppl 1. S579–S580.
Article
66. Milia AF, Ibba-Manneschi L, Manetti M, Benelli G, Messerini L, Matucci-Cerinic M. HLA-B27 transgenic rat: an animal model mimicking gut and joint involvement in human spondyloarthritides. Ann N Y Acad Sci. 2009; 1173:570–574. PMID: 19758201.
67. Koleva PT, Valcheva RS, Sun X, Gänzle MG, Dieleman LA. Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats. Br J Nutr. 2012; 108(9):1633–1643. PMID: 22243836.
Article
68. McGuckin MA, Eri RD, Das I, Lourie R, Florin TH. ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2010; 298(6):G820–G832. PMID: 20338921.
Article
69. Buchholz BM, Billiar TR, Bauer AJ. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. Am J Physiol Gastrointest Liver Physiol. 2010; 299(2):G531–G538. PMID: 20508155.
Article
70. Gibson DL, Montero M, Ropeleski MJ, Bergstrom KS, Ma C, Ghosh S, Merkens H, Huang J, Månsson LE, Sham HP, McNagny KM, Vallance BA. Interleukin-11 reduces TLR4-induced colitis in TLR2-deficient mice and restores intestinal STAT3 signaling. Gastroenterology. 2010; 139(4):1277–1288. PMID: 20600022.
Article
71. Majumdar D, Tiernan JP, Lobo AJ, Evans CA, Corfe BM. Keratins in colorectal epithelial function and disease. Int J Exp Pathol. 2012; 93(5):305–318. PMID: 22974212.
Article
72. Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR, Geyfman M, Ouellette AJ, Andersen B, Lipkin SM. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2-/- mice. Dev Biol. 2010; 338(2):270–279. PMID: 20025862.
Article
73. Park SW, Zhen G, Verhaeghe C, Nakagami Y, Nguyenvu LT, Barczak AJ, Killeen N, Erle DJ. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci U S A. 2009; 106(17):6950–6955. PMID: 19359471.
Article
74. O'Gorman S, Dagenais NA, Qian M, Marchuk Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci U S A. 1997; 94(26):14602–14607. PMID: 9405659.
75. Badea TC, Wang Y, Nathans J. A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci. 2003; 23(6):2314–2322. PMID: 12657690.
Article
76. Garcia EL, Mills AA. Getting around lethality with inducible Cremediated excision. Semin Cell Dev Biol. 2002; 13(2):151–158. PMID: 12127267.
Article
77. Ryu H, Posca D, Barrett T. Bin1: a new player in IBD barrier dysfunction. Dig Dis Sci. 2012; 57(7):1751–1753. PMID: 22644742.
Article
78. Alonzi T, Newton IP, Bryce PJ, Di Carlo E, Lattanzio G, Tripodi M, Musiani P, Poli V. Induced somatic inactivation of STAT3 in mice triggers the development of a fulminant form of enterocolitis. Cytokine. 2004; 26(2):45–56. PMID: 15050604.
Article
79. Goodbourn S, Maniatis T. Overlapping positive and negative regulatory domains of the human beta-interferon gene. Proc Natl Acad Sci U S A. 1988; 85(5):1447–1451. PMID: 3422743.
Article
80. Kandimalla ER, Yu D, Zhao Q, Agrawal S. Effect of chemical modifications of cytosine and guanine in a CpG-motif of oligonucleotides: structure-immunostimulatory activity relationships. Bioorg Med Chem. 2001; 9(3):807–813. PMID: 11310616.
Article
81. Rajagopalan G, Kudva YC, Sen MM, Marietta EV, Murali N, Nath K, Moore J, David CS. IL-10-deficiency unmasks unique immune system defects and reveals differential regulation of organ-specific autoimmunity in non-obese diabetic mice. Cytokine. 2006; 34(1-2):85–95. PMID: 16740391.
Article
82. Siddiqui KR, Laffont S, Powrie F. E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity. 2010; 32(4):557–567. PMID: 20399121.
Article
83. Villarino AV, Artis D, Bezbradica JS, Miller O, Saris CJ, Joyce S, Hunter CA. IL-27R deficiency delays the onset of colitis and protects from helminth-induced pathology in a model of chronic IBD. Int Immunol. 2008; 20(6):739–752. PMID: 18375937.
Article
84. Chen JF, Guo JH, Moxham CM, Wang HY, Malbon CC. Conditional, tissue-specific expression of Q205L G alpha i2 in vivo mimics insulin action. J Mol Med (Berl). 1997; 75(4):283–289. PMID: 9151214.
85. Schoeb TR, Bullard DC. Microbial and histopathologic considerations in the use of mouse models of inflammatory bowel diseases. Inflamm Bowel Dis. 2012; 18(8):1558–1565. PMID: 22294506.
Article
86. Chichlowski M, Sharp JM, Vanderford DA, Myles MH, Hale LP. Helicobacter typhlonius and Helicobacter rodentium differentially affect the severity of colon inflammation and inflammationassociated neoplasia in IL10-deficient mice. Comp Med. 2008; 58(6):534–541. PMID: 19149410.
87. McNamee EN, Wermers JD, Masterson JC, Collins CB, Lebsack MD, Fillon S, Robinson ZD, Grenawalt J, Lee JJ, Jedlicka P, Furuta GT, Rivera-Nieves J. Novel model of TH2-polarized chronic ileitis: the SAMP1 mouse. Inflamm Bowel Dis. 2010; 16(5):743–752. PMID: 19856411.
Article
88. Luedde T, Schwabe RF. NF-κB in the liver--linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011; 8(2):108–118. PMID: 21293511.
Article
Full Text Links
  • LAR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr