Korean J Nucl Med.  2003 Dec;37(6):402-417.

Biodistribution and Hepatic Metabolism of Galactosylated 111In-Antibody-Chelator Conjugates: Comparison with 111In-Antibody-Chelator Conjugates

Affiliations
  • 1Department of Nuclear Medicine, Medical School, Kyungpook National University, Korea. jaetae@knu.ac.kr
  • 2Department of Veterinary Medicine, Veterinary College, Kyungpook National University, Korea.
  • 3Department of Pharmacology, Yeoungnam University Medical School, Daegu, Korea.
  • 4Department of Nuclear Medicine, Clinical Center, National Institutes of Health, USA.

Abstract

PURPOSE
To evaluate the use of monoclonal antibody (MoAb) as a carrier of the receptor-binding ligand, the receptor mediated uptake into liver and subsequent metabolism of (111) In-labeled galactosylated MoAb-chelator conjugates were investigated and compared with those of (111) In labeled MoAb. MATERIALS AND METHODS: T101 MoAb, IgG2 against human lymphocytic leukemic cell, conjugated with cyclic DTPA dianhydride (DTPA) or 2-p-isothiocyanatobenzyl-6-methyl-DTPA (1B4M) was galactosylated with 2-imino-2-methoxyethyl-1-thio-beta-D-galactose and then radiolabeled with (111) In. Biodistribution and metabolism study was performed with two (111) In-conjugates in mice and rats. RESULTS: (111) In-labeled T101 and its galactosylated conjugates were taken to the liver by the time, mostly within 10 min. However DTPA conjugate was retained longer in the liver than the 1B4M conjugate (55% vs 20% of injected dose at 44 hr). During this time, the radiometabolite of DTPA conjugate was excreted similarly into urine (24%) and feces (17%). The radiometabolite of 1B4M was excreted primarily into feces (68%) rather than urine (8%). Size exclusion HPLC analysis of the bile and supernatant of liver homogenate showed two peaks, the first (35%) with the retention time (Rt) identical to IgG and the second (65%) with Rt similar to free 111In at 3 hr post-injection for the 1B4M conjugate, indicating that the metabolite is rapidly excreted through the biliary system. In contrast to DTPA conjugate, the small (111) In-DTPA-like metabolite was the major radioindium component (90%) in the liver homogenate as early as 3 hour post-injection, but the cumulative radioindium activity in feces was only 17% at 44 hour, indicating that the metabolite from DTPA conjugate does not clear readily through the biliary tract. CONCLUSION: The galactosylation of the MoAb conjugates resulted in higher hepatocyte uptake and enhanced metabolism, compared to those without galactosylation. Metabolism of the MoAb-conjugates is different between compounds radiolabled with different chelators due to different characteristics of radiometabolites generated in the liver.

Keyword

Biodistribution; Metabolism; Galactosylated antibody; (111)In-labeled antibody

MeSH Terms

Animals
Bile
Biliary Tract
Chelating Agents
Chromatography, High Pressure Liquid
Feces
Hepatocytes
Humans
Immunoglobulin G
Liver
Metabolism*
Mice
Pentetic Acid
Rats
Chelating Agents
Immunoglobulin G
Pentetic Acid
Full Text Links
  • KJNM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr