Immune Netw.  2013 Aug;13(4):141-147. 10.4110/in.2013.13.4.141.

Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures

Affiliations
  • 1Department of Microbiology, BK 21 project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 120-752, Korea. jewookyu@yuhs.ac

Abstract

Hypoxia has been shown to promote inflammation, including the release of proinflammatory cytokines, but it is poorly investigated how hypoxia directly affects inflammasome signaling pathways. To explore whether hypoxic stress modulates inflammasome activity, we examined the effect of cobalt chloride (CoCl2)-induced hypoxia on caspase-1 activation in primary mixed glial cultures of the neonatal mouse brain. Unexpectedly, hypoxia induced by oxygen-glucose deprivation or CoCl2 treatment failed to activate caspase-1 in microglial BV-2 cells and primary mixed glial cultures. Of particular interest, CoCl2-induced hypoxic condition considerably inhibited NLRP3-dependent caspase-1 activation in mixed glial cells, but not in bone marrow-derived macrophages. CoCl2-mediated inhibition of NLRP3 inflammasome activity was also observed in the isolated brain microglial cells, but CoCl2 did not affect poly dA:dT-triggered AIM2 inflammasome activity in mixed glial cells. Our results collectively demonstrate that CoCl2-induced hypoxia may negatively regulate NLRP3 inflammasome signaling in brain glial cells, but its physiological significance remains to be determined.

Keyword

Cobalt chloride (CoCl2); Hypoxia; NLRP3; Inflammasome; Caspase-1
Full Text Links
  • IN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2021 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr