J Clin Neurol.  2009 Dec;5(4):178-185. 10.3988/jcn.2009.5.4.178.

Increased EEG Current-Source Density in the High Beta Frequency Band Induced by Levetiracetam Adjunctive Therapy in Refractory Partial Epilepsy

Affiliations
  • 1Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Korea.
  • 2Department of Neurology and Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Korea. mnkwon21@daum.net

Abstract

BACKGROUND AND PURPOSE
Levetiracetam (LEV) is an antiepileptic drug (AED) that has favorable effects on cognition. Although neuropsychological studies have demonstrated these favorable outcomes on cognition, there are few electrophysiologic data describing the functional changes exerted by LEV. The purpose of this study was to determine the effects of LEV adjunctive therapy on the current-source density (CSD) in the high beta frequency band (22-30 Hz) of EEG background activity in refractory partial epilepsy (RPE). METHODS: We conducted a 24-week, open-label, prospective study in 24 patients with RPE. Scalp electroencephalography and neuropsychological tests (NPTs) were conducted twice, once before the LEV trial and then again after 24 weeks of medication. RESULTS: The CSD in the 22-30 Hz band of EEG background activity increased in the bilateral anterior cingulate gyri, left parahippocampal gyrus, and a small area of the right anterior parahippocampal gyrus after the LEV trial. Neither seizure freedom nor the dosage increment of LEV elicited meaningful CSD changes. Verbal memory and executive function were improved after the 24-week LEV trial. CONCLUSIONS: To our knowledge, this is the first study to examine the changes in CSD induced by LEV adjunctive therapy in RPE patients. The CSD changes and NPT results suggest that LEV enhances the activities of the neuronal networks in the prefrontal cortex and left hippocampus.

Keyword

electroencephalography; current-source analysis; levetiracetam; adjunctive therapy; refractory partial epilepsy; neuropsychological tests

MeSH Terms

Cognition
Electroencephalography
Epilepsies, Partial
Executive Function
Freedom
Hippocampus
Humans
Memory
Neurons
Neuropsychological Tests
Parahippocampal Gyrus
Piracetam
Prefrontal Cortex
Prospective Studies
Scalp
Seizures
Piracetam

Figure

  • Fig. 1 Statistical nonparametric maps (SnPMs) of the 22-30 Hz frequency band with an add-on trial of levetiracetam (LEV) in patients with refractory partial epilepsy (RPE)(n=24). The current-source density (CSD) after 24 weeks of the LEV trial compared with that at baseline was increased in the bilateral anterior cingulate gyri, left parahippocampal gyrus, and a small area of the right anterior parahippocampal gyrus (p<0.05).

  • Fig. 2 SnPMs of the 22-30 Hz frequency band with an add-on trial of LEV in patients with RPE (n=24). A: The CSD in a small area of the bilateral superior parietal gyri was higher for seizure freedom (n=8) than for no freedom from seizures (n=16, p<0.05). B: The CSD in a small area of the bilateral precunei was higher for an LEV dosage of at least 2,000 mg/day (n=15) than for one of less than 2,000 mg/day (n=9, p<0.05). SnPMs: statistical nonparametric maps, LEV: levetiracetam, RPE: refractory partial epilepsy, CSD: current-source density.


Reference

1. Park SP, Kwon SH. Cognitive effects of antiepileptic drugs. J Clin Neurol. 2008. 4:99–106.
Article
2. Loring DW, Marino S, Meador KJ. Neuropsychological and behavioral effects of antiepilepsy drugs. Neuropsychol Rev. 2007. 17:413–425.
Article
3. Lee HW, Jung DK, Suh CK, Kwon SH, Park SP. Cognitive effects of low-dose topiramate monotherapy in epilepsy patients: A 1-year follow-up. Epilepsy Behav. 2006. 8:736–741.
Article
4. Park SP, Hwang YH, Lee HW, Suh CK, Kwon SH, Lee BI. Long-term cognitive and mood effects of zonisamide monotherapy in epilepsy patients. Epilepsy Behav. 2008. 12:102–108.
Article
5. Cereghino JJ, Biton V, Abou-Khalil B, Dreifuss F, Gauer LJ, Leppik I. Levetiracetam for partial seizures: results of a double-blind, randomized clinical trial. Neurology. 2000. 55:236–242.
6. Berkovic SF, Knowlton RC, Leroy RF, Schiemann J, Falter U. Levetiracetam N01057 Study Group. Placebo-controlled study of levetiracetam in idiopathic generalized epilepsy. Neurology. 2007. 69:1751–1760.
Article
7. Meador KJ, Gevins A, Loring DW, McEvoy LK, Ray PG, Smith ME, et al. Neuropsychological and neurophysiologic effects of carbamazepine and levetiracetam. Neurology. 2007. 69:2076–2084.
Article
8. Piazzini A, Chifari R, Canevini MP, Turner K, Fontana SP, Canger R. Levetiracetam: an improvement of attention and of oral fluency in patients with partial epilepsy. Epilepsy Res. 2006. 68:181–188.
Article
9. Zhou B, Zhang Q, Tian L, Xiao J, Stefan H, Zhou D. Effects of levetiracetam as an add-on therapy on cognitive function and quality of life in patients with refractory partial seizures. Epilepsy Behav. 2008. 12:305–310.
Article
10. Neyens LG, Alpherts WC, Aldenkamp AP. Cognitive effects of a new pyrrolidine derivative (levetiracetam) in patients with epilepsy. Prog Neuropsychopharmacol Biol Psychiatry. 1995. 19:411–419.
Article
11. Ciesielski AS, Samson S, Steinhoff BJ. Neuropsychological and psychiatric impact of add-on titration of pregabalin versus levetiracetam: a comparative short-term study. Epilepsy Behav. 2006. 9:424–431.
Article
12. Aldenkamp AP, Overweg J, Gutter T, Beun AM, Diepman L, Mulder OG. Effect of epilepsy, seizures and epileptiform EEG discharges on cognitive function. Acta Neurol Scand. 1996. 93:253–259.
Article
13. Coq JO, Xerri C. Acute reorganization of the forepaw representation in the rat SI cortex after focal cortical injury: neuroprotective effects of piracetam treatment. Eur J Neurosci. 1999. 11:2597–2608.
Article
14. Kristeva-Feige R, Feige B, Makeig S, Ross B, Elbert T. Oscillatory brain activity during a motor task. Neuroreport. 1993. 4:1291–1294.
Article
15. Pulvermüller F, Eulitz C, Pantev C, Mohr B, Feige B, Lutzenberger W, et al. High-frequency cortical responses reflect lexical processing: an MEG study. Electroencephalogr Clin Neurophysiol. 1996. 98:76–85.
Article
16. Bhattacharya J, Petsche H, Pereda E. Long-range synchrony in the gamma band: role in music perception. J Neurosci. 2001. 21:6329–6337.
17. Tallon C, Bertrand O, Bouchet P, Pernier J. Gamma-range activity evoked by coherent visual stimuli in humans. Eur J Neurosci. 1995. 7:1285–1291.
Article
18. Pulvermüller F. Hebb's concept of cell assemblies and the psychophysiology of word processing. Psychophysiology. 1996. 33:317–333.
Article
19. Pantev C. Evoked and induced gamma-band activity of the human cortex. Brain Topogr. 1995. 7:321–330.
Article
20. Fell J, Fernández G, Klaver P, Elger CE, Fries P. Is synchronized neuronal gamma activity relevant for selective attention? Brain Res Brain Res Rev. 2003. 42:265–272.
Article
21. Koles ZJ. Trends in EEG source localization. Electroencephalogr Clin Neurophysiol. 1998. 106:127–137.
Article
22. Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994. 18:49–65.
Article
23. Talairach J, Tournoux P. Co-planar sterotaxic atlas of the human brain: 3-dimensional proportional system-an approach to cerebral imaging. 1988. New York: Thieme Medical Publisher.
24. Towle VL, Bolaños J, Suarez D, Tan K, Grzeszczuk R, Levin DN, et al. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr Clin Neurophysiol. 1993. 86:1–6.
Article
25. Pascual-Marqui RD. Review of methods for solving the EEG inverse problem. Interantional Journal of Bioelectromagnetism. 1999. 1:75–86.
26. Williams JM. Memory Assessment Scales profesional manual. 1991. Odessa, FL: Psychological Assessment Resources.
27. Wechsler D. Wechsler Memory Scale-Revised manual. 1987. San Antonio, TX: Psychological Corp..
28. Reitan RM, Wolfson D. The Halstead-Retan Neuropsychological Test Battery: theory and clinical interpretation. 1993. 2nd ed. Tucson, AZ: Neuropsychology Press.
29. Goodglass H, Kaplan E, Barresi B. Boston Diagnostic Aphasia Examination. 2000. 3rd ed. (BDAE-3). San Antonio, TX: Psychhological Corp..
30. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961. 4:561–571.
Article
31. Beck AT, Steer RA. Manual for the Beck Anxiety Inventory. 1990. San Antonio, TX: Psychological Corp..
32. Wagner GL, Wilms EB, Van Donselaar CA, Vecht ChJ. Levetiracetam: preliminary experience in patients with primary brain tumours. Seizure. 2003. 12:585–586.
Article
33. Mecarelli O, Vicenzini E, Pulitano P, Vanacore N, Romolo FS, Di Piero V, et al. Clinical, cognitive, and neurophysiologic correlates of short-term treatment with carbamazepine, oxcarbazepine, and levetiracetam in healthy volunteers. Ann Pharmacother. 2004. 38:1816–1822.
Article
34. Helmstaedter C, Witt JA. The effects of levetiracetam on cognition: a non-interventional surveillance study. Epilepsy Behav. 2008. 13:642–649.
Article
35. Flicker L, Grimley Evans J. Piracetam for dementia or cognitive impairment. Cochrane Database Syst Rev. 2000. CD001011.
Article
36. Schindler U. Pre-clinical evaluation of cognition enhancing drugs. Prog Neuropsychopharmacol Biol Psychiatry. 1989. 13:Suppl. S99–S115.
Article
37. Genton P, Van Vleymen B. Piracetam and levetiracetam: close structural similarities but different pharmacological and clinical profiles. Epileptic Disord. 2000. 2:99–105.
38. Salinsky MC, Binder LM, Oken BS, Storzbach D, Aron CR, Dodrill CB. Effects of gabapentin and carbamazepine on the EEG and cognition in healthy volunteers. Epilepsia. 2002. 43:482–490.
Article
39. Salinsky MC, Spencer DC, Oken BS, Storzbach D. Effects of oxcarbazepine and phenytoin on the EEG and cognition in healthy volunteers. Epilepsy Behav. 2004. 5:894–902.
Article
40. Salinsky M, Storzbach D, Oken B, Spencer D. Topiramate effects on the EEG and alertness in healthy volunteers: a different profile of antiepileptic drug neurotoxicity. Epilepsy Behav. 2007. 10:463–469.
Article
41. Veauthier J, Haettig H, Meencke HJ. Impact of levetiracetam add-on therapy on different EEG occipital frequencies in epileptic patients. Seizure. 2009. 18:392–395.
Article
42. Devinsky O, D'Esposito M. Neurology of cognitive and behavioral disorders. 2004. 1st ed. New York: Oxford;275–329.
43. Krings T, Chiappa KH, Cuffin BN, Cochius JI, Connolly S, Cosgrove GR. Accuracy of EEG dipole source localization using implanted sources in the human brain. Clin Neurophysiol. 1999. 110:106–114.
Article
44. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R. EEG source imaging. Clin Neurophysiol. 2004. 115:2195–2222.
Article
45. Zumsteg D, Friedman A, Wennberg RA, Wieser HG. Source localization of mesial temporal interictal epileptiform discharges: correlation with intracranial foramen ovale electrode recordings. Clin Neurophysiol. 2005. 116:2810–2818.
Article
46. Zumsteg D, Friedman A, Wieser HG, Wennberg RA. Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clin Neurophysiol. 2006. 117:2615–2626.
Article
47. Merlet I, Garcia-Larrea L, Grégoire MC, Lavenne F, Mauguiére F. Source propagation of interictal spikes in temporal lobe epilepsy. Correlations between spike dipole modelling and [18F]fluorodeoxy-glucose PET data. Brain. 1996. 119:377–392.
Article
48. Cuffin BN, Schomer DL, Ives JR, Blume H. Experimental tests of EEG source localization accuracy in realistically shaped head models. Clin Neurophysiol. 2001. 112:2288–2292.
Article
Full Text Links
  • JCN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr