J Korean Cancer Assoc.  2000 Feb;32(1):200-209.

Tumor - specific Virus Replication and Cytotoxicity of E1B 55 kD - deleted Adenovirus

Affiliations
  • 1Departments of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
  • 2Departments of Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
  • 3Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.

Abstract

PURPOSE: To overcome the limitations of cancer gene therapy using replication-incom- petent adenovirus, we generated E1B 55 kD-deleted adenovirus (YKL-1) by polymerase chain reaction (PCR) and homologous recombination. We then investigated tumor-specific virus replication and cytotoxicity of YKL-1 in vitro and in vivo.
MATERIALS AND METHODS
YKL-1 was constructed by reintroducting E1A and E1B 19 kD into pTG-CMV El/E3-deficient adenoviral vector and inducing homologous recombination in E. coli. The recombinant vector pYKL-1 was transfected into 293 cells to generate YKL-1. The properties of newly constructed YKL-1 was defined by PCR and immuno- blotting analysis. Virus replication was examined by infecting human normal and cancer cells on 6-wells at multiplicity of infection (MOI) of 10 for 3 days. Virus was then recovered and titered. Cytopathic effect was analyzed by infecting human normal and cancer cells on 24-wells at MOIs of 10, 1 or 0.1 for 7 to 10 days and staining them with crystal violet solution. Inhibition of tumor growth was examined in human cancer cell xenografts in nu/nu mice by intratumoral injection of YKL-l.
RESULTS
PCR and immunoblotting analysis confirmed that YKL-1 contained E1A and E1B 19 kD but not E1B 55 kD. In human normal cells, virus replication and subsequent cytopathic effect of E1B 55 kD-deleted adenovirus YKL-1 was markedly attenuated by larger than 2 to 3 log in magnitude, compared to that of wild-type ad-XJ. In contrast, YKL-1 was capable of replicating and inducing cytotoxicity i.n most human cancer cells. C33A and Hep3B containing p53 mutation were much more sensitive, whereas HeLa and H460 with wild type p53 were relatively resistant to YKL-1. Finally, the tumor growth was dramatically retarded by intratumoral injection of YKL-1 in C33A cervical cancer xenograft and the histology showed significant necrosis by intratumoral injection of YKL-1.
CONCLUSION
The results here demonstrated the ability of preferential virus replication and cytotoxicity of ElB 55 kD-deleted adenovirus YKL-1 in human cancer cells. Therefore, these indicated a promising potential of YKL-1 as an antitumoral virus agent and a selective replication-competent virus vector.

Keyword

Adenovirus; Gene therapy; El gene; pS3 gene

MeSH Terms

Adenoviridae*
Animals
Genes, Neoplasm
Genetic Therapy
Gentian Violet
Heterografts
Homologous Recombination
Humans
Immunoblotting
Mice
Necrosis
Polymerase Chain Reaction
Uterine Cervical Neoplasms
Virus Replication*
Gentian Violet
Full Text Links
  • JKCA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr