Brain Tumor Res Treat.  2014 Apr;2(1):1-6. 10.14791/btrt.2014.2.1.1.

Roles of Long Non-Coding RNAs on Tumorigenesis and Glioma Development

Affiliations
  • 1Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea. jhkim@ncc.re.kr
  • 2Specific Organs Cancer Branch, Research Institute, National Cancer Center, Goyang, Korea.
  • 3Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.

Abstract

More than 98% of eukaryotic transcriptomes are composed of non-coding RNAs with no functional protein-coding capacity. Those transcripts also include tens of thousands of long non-coding RNAs (lncRNAs) which are emerging as key elements of cellular homeostasis, essentially tumorigenesis steps. However, we are only beginning to understand the nature and extent of the involvement of lncRNAs on tumorigeneis. Here, we highlight recent progresses that have identified a myriad of molecular functions on tumorigenesis for several lncRNAs including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), prostate cancer associated non-coding RNA 1 (PRNCR1), prostate cancer gene expression marker 1 (PCGEM1), H19, and homeobox transcript antisense intergenic RNA (HOTAIR), and several new lncRNAs for glioma development. Potential therapeutic approaches for the lncRNAs in various human diseases are also discussed.

Keyword

Non-coding RNA; lncRNA; Tumorigenesis; Glioma

MeSH Terms

Adenocarcinoma
Carcinogenesis*
Gene Expression
Genes, Homeobox
Glioma*
Homeostasis
Humans
Lung
Prostatic Neoplasms
RNA
RNA, Long Noncoding*
RNA, Untranslated
Transcutaneous Electric Nerve Stimulation
RNA
RNA, Long Noncoding
RNA, Untranslated

Figure

  • Fig. 1 Schematic diagram of lncRNA action mechanisms. A: Mediators on signaling pathway: lncRNAs can serve as molecular signaling mediators which modulate certain set of gene expression in conjunction with specific transcription factors or chromatin modifiers. B: Molecular decoys: lncRNAs can serve as the molecular decoy which takes away proteins or RNAs from the specific location. C: Work as molecular guides: lncRNAs can serve as the molecular guides by locating certain ribonucleoprotein complexes to specific target site on chromatin. D: Scaffold function: lncRNAs can support the assembly of protein complexes which link the factors together to generate brand new functions. IncRNA: long non-coding RNA.

  • Fig. 2 Potential therapeutic approaches for targeting lncRNAs. Several methods, including small interfering RNAs (siRNAs), antisense oligonucleotides (ASOs) and ribozymes or deoxyribozymes, can be used to block the function of lncRNAs. A: Synthetic double-stranded short RNA can be delivered to cells and the antisense strand of the siRNA duplex loads on to the RNA-induced silencing complex (RISC) and degrades the targeted lncRNA. B: ASOs are single-stranded, chemically modified DNA oligomers (less than 25 nt in length) that are designed to be complementary to a target lncRNA. ASOs form a heteroduplex with the target lncRNA, and RNase H recognizes the lncRNA-DNA heteroduplex and cleaves the RNA strand. C: However, ribozymes or deoxyribozymes do not dependent on the RISC, which mediates siRNA-induced degradation, or on RNase H. IncRNA: long non-coding RNA.


Reference

1. Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science. 2005; 309:1559–1563. PMID: 16141072.
2. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004; 431:931–945. PMID: 15496913.
3. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011; 12:861–874. PMID: 22094949.
Article
4. Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007; 316:1484–1488. PMID: 17510325.
Article
5. Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet. 2007; 8:413–423. PMID: 17486121.
Article
6. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006; 6:259–269. PMID: 16557279.
Article
7. Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991; 351:153–155. PMID: 1709450.
Article
8. Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol. 2013; 34:613–620. PMID: 23359273.
Article
9. Gibb EA, Vucic EA, Enfield KS, et al. Human cancer long non-coding RNA transcriptomes. PLoS One. 2011; 6:e25915. PMID: 21991387.
Article
10. Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol. 2010; 7:582–585. PMID: 20930520.
11. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013; 339:159–166. PMID: 23791884.
Article
12. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; 43:904–914. PMID: 21925379.
Article
13. Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antago nizes let-7 microRNAs. Mol Cell. 2013; 52:101–112. PMID: 24055342.
14. Yang L, Lin C, Jin C, et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013; 500:598–602. PMID: 23945587.
Article
15. Plath K, Fang J, Mlynarczyk-Evans SK, et al. Role of histone H3 lysine 27 methylation in X inactivation. Science. 2003; 300:131–135. PMID: 12649488.
Article
16. Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010; 142:409–419. PMID: 20673990.
Article
17. Bejerano G, Pheasant M, Makunin I, et al. Ultraconserved elements in the human genome. Science. 2004; 304:1321–1325. PMID: 15131266.
Article
18. Lujambio A, Portela A, Liz J, et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene. 2010; 29:6390–6401. PMID: 20802525.
Article
19. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012; 81:145–166. PMID: 22663078.
Article
20. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010; 464:1071–1076. PMID: 20393566.
Article
21. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003; 22:8031–8041. PMID: 12970751.
22. Wilusz JE, Freier SM, Spector DL. 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell. 2008; 135:919–932. PMID: 19041754.
Article
23. Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010; 39:925–938. PMID: 20797886.
Article
24. Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell. 2003; 12:5–14. PMID: 12887888.
25. Manley JL, Krainer AR. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev. 2010; 24:1073–1074. PMID: 20516191.
26. Gutschner T, Hämmerle M, Eissmann M, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013; 73:1180–1189. PMID: 23243023.
Article
27. Tripathi V, Shen Z, Chakraborty A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013; 9:e1003368. PMID: 23555285.
Article
28. Joaquin M, Watson RJ. Cell cycle regulation by the B-Myb transcription factor. Cell Mol Life Sci. 2003; 60:2389–2401. PMID: 14625684.
Article
29. Petrovics G, Zhang W, Makarem M, et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene. 2004; 23:605–611. PMID: 14724589.
Article
30. Chung S, Nakagawa H, Uemura M, et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 2011; 102:245–252. PMID: 20874843.
Article
31. Komiya A, Yasuda K, Watanabe A, Fujiuchi Y, Tsuzuki T, Fuse H. The prognostic significance of loss of the androgen receptor and neuroendocrine differentiation in prostate biopsy specimens among castration-resistant prostate cancer patients. Mol Clin Oncol. 2013; 1:257–262. PMID: 24649157.
Article
32. Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990; 10:28–36. PMID: 1688465.
Article
33. Rachmilewitz J, Goshen R, Ariel I, Schneider T, de Groot N, Hochberg A. Parental imprinting of the human H19 gene. FEBS Lett. 1992; 309:25–28. PMID: 1380925.
Article
34. Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012; 14:659–665. PMID: 22684254.
Article
35. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013; 333:213–221. PMID: 23354591.
Article
36. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J. 2013; 280:1709–1716. PMID: 23399020.
Article
37. Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One. 2007; 2:e845. PMID: 17786216.
Article
38. Matouk IJ, Mezan S, Mizrahi A, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta. 2010; 1803:443–451. PMID: 20117150.
Article
39. Tsang WP, Ng EK, Ng SS, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010; 31:350–358. PMID: 19926638.
Article
40. Zhang L, Yang F, Yuan JH, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013; 34:577–586. PMID: 23222811.
Article
41. Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007; 13:313–316. PMID: 17237358.
Article
42. Gwak HS, Kim TH, Jo GH, et al. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS One. 2012; 7:e47449. PMID: 23077620.
Article
43. Kwak HJ, Kim YJ, Chun KR, et al. Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene. 2011; 30:2433–2442. PMID: 21278789.
Article
44. Kim YJ, Park SJ, Choi EY, et al. PTEN modulates miR-21 processing via RNA-regulatory protein RNH1. PLoS One. 2011; 6:e28308. PMID: 22162762.
Article
45. Ellis BC, Molloy PL, Graham LD. CRNDE: A Long Non-Coding RNA Involved in CanceR, Neurobiology, and DEvelopment. Front Genet. 2012; 3:270. PMID: 23226159.
Article
46. Graham LD, Pedersen SK, Brown GS, et al. Colorectal Neoplasia Differentially Expressed (CRNDE), a Novel Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas. Genes Cancer. 2011; 2:829–840. PMID: 22393467.
Article
47. Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012; 113:1868–1874. PMID: 22234798.
Article
48. Shi Y, Wang Y, Luan W, et al. Long Non-Coding RNA H19 Promotes Glioma Cell Invasion by Deriving miR-675. PLoS One. 2014; 9:e86295. PMID: 24466011.
Article
49. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013; 45:1895–1910. PMID: 23748105.
Article
50. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013; 12:847–865. PMID: 24172333.
Article
51. Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009; 458:223–227. PMID: 19182780.
Article
Full Text Links
  • BTRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr