Immune Netw.  2009 Aug;9(4):122-126. 10.4110/in.2009.9.4.122.

Regulation of Tumor Immune Surveillance and Tumor Immune Subversion by TGF-beta

Affiliations
  • 1Laboratory of Immunology, Lee Gil-Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea. mamurashin@gachon.ac.kr
  • 2Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Abstract

Transforming growth factor-beta (TGF-beta) is a highly pleiotropic cytokine playing pivotal roles in immune regulation. TGF-beta facilitates tumor cell survival and metastasis by targeting multiple cellular components. Focusing on its immunosuppressive functions, TGF-beta antagonists have been employed for cancer treatment to enhance tumor immunity. TGF-beta antagonists exert anti-tumor effects through #1 activating effector cells such as NK cells and cytotoxic CD8+ T cells (CTLs), #2 inhibiting regulatory/suppressor cell populations, #3 making tumor cells visible to immune cells, #4 inhibiting the production of tumor growth factors. This review focuses on the effect of TGF-beta on T cells, which are differentiated into effector T cells or newly identified tumor-supporting T cells.

Keyword

transforming growth factor-beta (TGF-beta); primary tumor; metastasis; CD8+T cells; IL-17

MeSH Terms

Cell Survival
Intercellular Signaling Peptides and Proteins
Interleukin-17
Killer Cells, Natural
Neoplasm Metastasis
T-Lymphocytes
Transforming Growth Factor beta
Intercellular Signaling Peptides and Proteins
Interleukin-17
Transforming Growth Factor beta

Figure

  • Figure 1 TGF-β down-regulates the expression of NKG2D on CD8+ T cells and NKG2D ligand on tumor cells.

  • Figure 2 The role of TGF-β in subverting the CD8+ T cell response. TGF-β produced and activated in the tumor environment suppresses the immune surveillance, which mainly affects the number of metastasis by preventing the generation of cytotoxic T cells. On the other hand, TGF-β in combination with other factors, such as IL-6, subverts CD8+ T cells into IL-17 producing cells, which mainly affects the size of tumor and metastasis. IL-17 might promote survival of tumor cells in the condition with low nutrition or chemotherapy.

  • Figure 3 The role of TGF-β in subverting the CD4+ T cell response. TGF-β directly or indirectly suppresses cytotoxic T cells via the suppression of CD4+ Th1 cells. TGF-β, presumably in combination with other factors, subverts CD4+ T cells into Foxp3+ Tregs or Th17 cells.


Reference

1. Miyazono K, Kusanagi K, Inoue H. Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol. 2001. 187:265–276.
2. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006. 24:99–146.
3. Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A. 2003. 100:8621–8623.
4. Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002. 109:1607–1615.
Article
5. Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S, Protter A, Murphy A, Chakravarty J, Dugar S, Schreiner G, Barnard N, Reiss M. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo. Clin Cancer Res. 2006. 12:4315–4330.
Article
6. Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007. 13:5262–5270.
Article
7. Denoix PF. Enquete permanent dans les centres anticancereaux. Bull Inst Nat Hyg. 1946. 1:70–75.
8. Chen F, Fujinaga T, Sato K, Sonobe M, Shoji T, Sakai H, Miyahara R, Bando T, Okubo K, Hirata T, Toi M, Date H. Clinical features of surgical resection for pulmonary metastasis from breast cancer. Eur J Surg Oncol. 2009. 35:393–397.
Article
9. Humphrey LJ, Singla O, Volenec FJ. Immunologic responsiveness of the breast cancer patient. Cancer. 1980. 46:893–898.
Article
10. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med. 2005. 202:919–929.
Article
11. Alleva DG, Burger CJ, Elgert KD. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J Immunol. 1994. 153:1674–1686.
12. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006. 6:506–520.
13. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008. 454:436–444.
Article
14. Yang L, Moses HL. Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res. 2008. 68:9107–9111.
Article
15. Geiser AG, Letterio JJ, Kulkarni AB, Karlsson S, Roberts AB, Sporn MB. Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci U S A. 1993. 90:9944–9948.
Article
16. Ljunggren HG, Kärre K. In search of the 'missing self: MHC molecules and NK cell recognition. Immunol Today. 1990. 11:237–244.
Article
17. Zwirner NW, Fuertes MB, Girart MV, Domaica CI, Rossi LE. Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev. 2007. 18:159–170.
Article
18. Lee JC, Lee KM, Kim DW, Heo DS. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol. 2004. 172:7335–7340.
Article
19. Nam JS, Terabe M, Mamura M, Kang MJ, Chae H, Stuelten C, Kohn E, Tang B, Sabzevari H, Anver MR, Lawrence S, Danielpour D, Lonning S, Berzofsky JA, Wakefield LM. An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res. 2008. 68:3835–3843.
Article
20. Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005. 8:369–380.
Article
21. Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol. 2006. 16:115–123.
Article
22. Kitamura T, Kometani K, Hashida H, Matsunaga A, Miyoshi H, Hosogi H, Aoki M, Oshima M, Hattori M, Takabayashi A, Minato N, Taketo MM. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet. 2007. 39:467–475.
Article
23. Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA, Laurence A, Michalowska A, Mamura M, Lonning S, Berzofsky JA, Wakefield LM. Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res. 2008. 68:3915–3923.
Article
24. Kapp JA, Bucy RP. CD8+ suppressor T cells resurrected. Hum Immunol. 2008. 69:715–720.
Article
25. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 2002. 17:375–387.
Article
26. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006. 24:179–189.
Article
27. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF. Generation and regulation of human CD4+ IL-17- producing T cells in ovarian cancer. Proc Natl Acad Sci U S A. 2008. 105:15505–15510.
Article
28. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT. Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003. 101:2620–2627.
Article
29. Kryczek I, Wei S, Szeliga W, Vatan L, Zou W. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood. 2009. 114:357–359.
Article
30. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009. 206:1457–1464.
Article
31. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O'Shea JJ, Cua DJ. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009. 10:314–324.
Article
32. Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T, Drake C, Pardoll D, Yu H. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell. 2009. 15:114–123.
Article
33. Martin-Orozco N, Dong C. The IL-17/IL-23 axis of inflammation in cancer: friend or foe? Curr Opin Investig Drugs. 2009. 10:543–549.
Full Text Links
  • IN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr