Transl Clin Pharmacol.  2018 Sep;26(3):103-110. 10.12793/tcp.2018.26.3.103.

Microbe-derived extracellular vesicles as a smart drug delivery system

Affiliations
  • 1Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea. ykkim@mdhc.kr

Abstract

The human microbiome is known to play an essential role in influencing host health. Extracellular vesicles (EVs) have also been reported to act on a variety of signaling pathways, distally transport cellular components such as proteins, lipids, and nucleic acid, and have immunomodulatory effects. Here we shall review the current understanding of the intersectionality of the human microbiome and EVs in the emerging field of microbiota-derived EVs and their pharmacological potential. Microbes secrete several classes of EVs: outer membrane vesicles (OMVs), membrane vesicles (MVs), and apoptotic bodies. EV biogenesis is unique to each cell and regulated by sophisticated signaling pathways. EVs are primarily composed of lipids, proteins, nucleic acids, and recent evidence suggests they may also carry metabolites. These components interact with host cells and control various cellular processes by transferring their constituents. The pharmacological potential of microbiomederived EVs as vaccine candidates, biomarkers, and a smart drug delivery system is a promising area of future research. Therefore, it is necessary to elucidate in detail the mechanisms of microbiome-derived EV action in host health in a multi-disciplinary manner.

Keyword

Drug delivery system; Extracellular vesicles; Microbiome; Pharmabiotics

MeSH Terms

Biomarkers
Drug Delivery Systems*
Extracellular Vesicles*
Membranes
Microbiota
Nucleic Acids
Biomarkers
Nucleic Acids

Figure

  • Figure 1 Proposed bacterial extracellular vesicle secretion. Bacteria ubiquitously release extracellular vesicles (EVs) into the extracellular milieu roughly 10-300 nm in diameter. EVs are composed of a lipid bilayer containing soluble and insoluble proteins, nucleic acids, and lipids. The lipid bilayer encasing the vesicular contents confers protection from extracellular degradation by nucleases and proteases, allowing distal transfer of EV cargo. (A) Gram negative and positive bacteria secrete ectosomes, or outer membrane vesicles (OMV) and membrane vesicles (MV), respectively. OMV biogenesis through budding of the outer membrane is well characterized, however the mechanism of MV biogenesis through the thick peptidoglycan cell wall of gram positive bacteria is not yet fully understood. (B) Bacterial cells also undergo apoptosis, a conserved self-destruct mechanism instigated by environmental stimuli such as quorum sensing or UV damage. After the apoptotic pathway is initiated, nucleoid DNA is degraded and subsequently fragmented, followed by cell membrane fragmentation. Finally, blebbing of the cell membrane occurs, resulting in release of bacterial apoptotic bodies containing bacterial cellular components.

  • Figure 2 Proposed bacterial extracellular vesicle composition and related function. Bacterial EVs are enclosed in a phospholipid bilayer originating from the bacterial membrane that along with lipo- and cytosolic proteins can be used as a nutrient source by targeted cells. Cytoplasmic proteins contained within the EV also have roles in immunomodulation and potential pharmacological applications. Lipoproteins and LPS embedded in the phospholipid bilayer moderate site-specific targeting of the EV for intra- and intercellular communication and EV constituent delivery. Nucleic acids including sRNA, mRNA, tRNA, rRNA, and DNA are transported in bacterial EVs, further contributing to immunomodulation as well as horizontal gene transfer. Recent evidence that bacterial EVs are metabolically active suggest that bacterial EV may also contain metabolites, increasing the pharmacological potential of bacterial EVs.


Reference

1. H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, et al. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci. 2017; 18:E538. DOI: 10.3390/ijms18030538. PMID: 28257101.
2. Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012; 80:1948–1957. DOI: 10.1128/IAI.06014-11. PMID: 22409932.
Article
3. Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience. 2015; 65:783–797. PMID: 26955082.
Article
4. McConnell MJ. Extracellular vesicles and immune modulation. Immunol Cell Biol. 2018; 96:681–682.
Article
5. Lederberg J, Mccray AT. “Ome Sweet'Omics--A Genealogical Treasury of Words”. The Scientist. 2001; 8.
6. Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ. 2017; 356:j831. DOI: 10.1136/bmj.j831. PMID: 28298355.
Article
7. Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017; 5:e1373208. PMID: 28956703.
Article
8. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018; 57:1–24. DOI: 10.1007/s00394-017-1445-8.
Article
9. Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 2009; 9:5425–5436. DOI: 10.1002/pmic.200900338. PMID: 19834908.
10. Peeters SH, de Jonge MI. For the greater good: Programmed cell death in bacterial communities. Microbiol Res. 2018; 207:161–169. DOI: 10.1016/j.micres.2017.11.016. PMID: 29458850.
Article
11. National Human Genome Research Institute. An Overview of the Human Genome Project. Accessed 03 Oct 2018. https://www.genome.gov/12011238/an-overview-of-thehuman-genome-project/.
12. Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, Waterston RH. Genomics in C. elegans: so many genes, such a little worm. Genome Res. 2005; 15:1651–1660. PMID: 16339362.
13. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017; 550:61–66. DOI: 10.1038/nature23889. PMID: 28953883.
Article
14. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nature Med. 2018; 24:392–400. PMID: 29634682.
Article
15. Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. Engineering. 2017; 3:71–82.
Article
16. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015; 28:203–209. PMID: 25830558.
17. Huang YJ, Marsland BJ, Bunyavanich S, O'Mahony L, Leung DY, Muraro A, et al. The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol. 2017; 139:1099–1110. DOI: 10.1016/j.jaci.2017.02.007. PMID: 28257972.
18. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013; 32:623–642. DOI: 10.1007/s10555-013-9441-9. PMID: 23709120.
Article
19. Cocucci E, Meldolesi J. Ectosome and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015; 6:364–372.
20. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010; 64:163–184. DOI: 10.1146/annurev.micro.091208.073413. PMID: 20825345.
Article
21. McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gramnegative bacteria is a novel envelope stress response. Mol Microbiol. 2007; 63:545–558. PMID: 17163978.
Article
22. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013; 113:1–11. DOI: 10.1007/s11060-013-1084-8. PMID: 23456661.
Article
23. Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A. 2010; 107:19002–19007. DOI: 10.1073/pnas.1008843107. PMID: 20956325.
Article
24. Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015; 13:620–630. DOI: 10.1038/nrmicro3480. PMID: 26324094.
Article
25. Allocati N, Masulli M, Di Ilio C, De Laurenzi V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 2015; 6:e1609. DOI: 10.1038/cddis.2014.570. PMID: 25611384.
Article
26. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA cargo selection, Content, Release, and Uptake. Cell Mol Neurobiol. 2016; 36:301–312. DOI: 10.1007/s10571-016-0366-z. PMID: 27053351.
Article
27. Hanson PI, Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol. 2012; 28:337–362. DOI: 10.1146/annurev-cellbio-092910-154152. PMID: 22831642.
Article
28. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30:255–289. DOI: 10.1146/annurev-cellbio-101512-122326. PMID: 25288114.
Article
29. Williams RL, Urbé S. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol. 2007; 8:355–368. PMID: 17450176.
Article
30. Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014; 5:3477. DOI: 10.1038/ncomms4477. PMID: 24637612.
Article
31. van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, et al. The tetraspanin CD63 regulates ESCRT-independent and dependent endosomal sorting during melanogenesis. Dev Cell. 2011; 21:708–721. PMID: 21962903.
32. Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev. 2018; 27:535–555. DOI: 10.1002/mas.20175.
Article
33. Poste G, Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci U S A. 1976; 73:1603–1607. PMID: 818640.
Article
34. Papahadjopoulos D, Poste G, Schaeffer BE, Vail WJ. Membrane fusion and molecular segregation in phospholipid vesicles. Biochim Biophys Acta. 1974; 352:10–28. PMID: 4859411.
Article
35. Papahadjopoulos D, Mayhew E, Poste G, Smith S, Vail WJ. Incorporation of lipid vesicles by mammalian cells provides a potential method for modifying cell behaviour. Nature. 1974; 252:163–166. PMID: 4371572.
Article
36. Poste G, Papahadjopoulos D, Vail WJ. Lipid vesicles as carriers for introducing biologically active materials into cells. Methods Cell Biol. 1976; 14:33–71. PMID: 794631.
37. Casal JI, Rueda P, Hurtado A. Parvovirus-like particles as vaccine vectors. Methods. 1999; 19:174–186. PMID: 10525454.
Article
38. Parmar MM, Edwards K, Madden TD. Incorporation of bacterial membrane proteins into liposomes: factors influencing protein reconstitution. Biochim Biophys Acta. 1999; 1421:77–90. PMID: 10561473.
Article
39. Gho YS, Kim OY, Jang SC, Yoon CM, Kim YK. Method for treating and diagnosing cancer by using cell-derived microvesicles. Biochim Biophys Acta. 2009; 1788:2150–2159. PMID: 19695218.
40. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002; 71:635–700. PMID: 12045108.
Article
41. Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012; 7:1525–1541. DOI: 10.2147/IJN.S29661. PMID: 22619510.
42. Baldeschwieler JD. Phospholipid vesicle targeting using synthetic glycolipid and other determinants. Ann N Y Acad Sci. 1985; 446:349–367. PMID: 3860161.
Article
43. Bussian RW, Wriston JC Jr. Influence of incorporated cerebrosides on the interaction of liposomes with HeLa cells. Biochim Biophys Acta. 1977; 471:336. PMID: 921985.
Article
44. Juliano RL. Drug delivery systems: characteristics and biomedical applications. USA: Oxford University Press;1980. p. 189–236.
45. Mauk MR, Gamble RC, Baldeschwieler JD. Vesicle targeting: timed release and specificity for leukocytes in mice by subcutaneous injection. Science. 1980; 207:309–311. PMID: 7350660.
Article
46. Mauk MR, Gamble RC, Baldeschwieler JD. Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leukocytes in mice. Proc Natl Acad Sci U S A. 1980; 77:4430–4434. PMID: 6933495.
Article
47. Weinstein JN. Liposomes as “targeted” drug carriers: a physical chemical perspective. Pure Appl Chem. 1981; 53:2241–2254.
Article
48. Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, Rho S, et al. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics. 2011; 11:3424–3429. PMID: 21751344.
Article
49. Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol. 2002; 184:5036–5044. PMID: 12193619.
50. Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev. 2008; 32:361–385. DOI: 10.1111/j.1574-6976.2007.00095.x. PMID: 18248419.
Article
51. Storey DG, Ujack EE, Rabin HR, Mitchell I. Pseudomonas aeruginosa lasR Transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun. 1998; 66:2521–2528. PMID: 9596711.
52. Ashwell G, Morell AG. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974; 41:99–128. PMID: 4609051.
Article
53. Achord DT, Brot FE, Sly WS. Inhibition of the rat clearance system for agalacto-orosomucoid by yeast mannans and by mannose. Biochem Biophys Res Commun. 1977; 77:409–415. PMID: 329842.
Article
54. Stahl PD, Rodman JS, Miller MJ, Schlesinger PH. Evidence for receptormediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci U S A. 1978; 75:1399–1403. PMID: 274729.
Article
55. Hong SW, Choi EB, Min TK, Kim JH, Kim MH, Jeon SG, et al. An important role of α-hemolysin in extracellular vesicles on the development of atopic dermatitis induced by Staphylococcus aureus. PLoS One. 2014; 9:e100499. DOI: 10.1371/journal.pone.0100499. PMID: 24992681.
Article
56. Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol. 2010; 64:143–162. DOI: 10.1146/annurev.micro.112408.134309. PMID: 20825344.
Article
57. Walev I, Martin E, Jonas D, Mohamadzadeh M, Müller-Klieser W, Kunz L, et al. Staphylococcal alpha-toxin kills human keratinocytes by permeabilizing the plasma membrane for monovalent ions. Infect Immun. 1993; 61:4972–4979. PMID: 8225571.
Article
58. Wichmann K, Uter W, Weiss J, Breuer K, Heratizadeh A, Mai U, et al. Isolation of α-toxin-producing Staphylococcus aureus from the skin of highly sensitized adult patients with severe atopic dermatitis. Br J Dermatol. 2009; 161:300–305. DOI: 10.1111/j.1365-2133.2009.09229.x. PMID: 19438853.
59. Tsatsaronis JA, Franch-Arroyo S, Resch U, Charpentier E. Extracellular vesicle RNA: A universal mediator of microbial communication. Trends Microbiol. 2018; 26:401–410. DOI: 10.1016/j.tim.2018.02.009. PMID: 29548832.
Article
60. Bitto NJ, Chapman R, Pidot S, Costin A, Lo C, Choi J, et al. Bacteria membrane vesicles transport their DNA cargo into host cells. Sci Rep. 2017; 7:7072. DOI: 10.1038/s41598-017-07288-4. PMID: 28765539.
Article
61. Lambertz U, Oviedo Ovando ME, Vasconcelos EJ, Unrau PJ, Myler PJ, Reiner NE. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics. 2015; 16:151. DOI: 10.1186/s12864-015-1260-7. PMID: 25764986.
Article
62. Blenkiron C, Simonov D, Muthukaruppan A, Tsai P, Dauros P, Green S, et al. Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One. 2016; 11:e0160440. DOI: 10.1371/journal.pone.0160440. PMID: 27500956.
63. Sjöström AE, Sandblad L, Uhlin BE, Wai SN. Membrane vesicle-mediated release of bacterial RNA. Sci Rep. 2015; 5:15329. DOI: 10.1038/srep15329. PMID: 26483327.
Article
64. Choi EB, Hong SW, Kim DK, Jeon SG, Kim KR, Cho SH, et al. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy. 2014; 69:517–526. PMID: 24611950.
Article
65. Kawamura Y, Yamamoto Y, Sato TA, Ochiya T. Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution. Cancer Sci. 2017; 108:824–830. DOI: 10.1111/cas.13222. PMID: 28256033.
Article
66. Eigenbrod T, Dalpke AH. Bacterial RNA: An underestimated stimulus for innate immune responses. J Immunol. 2015; 195:411–418. DOI: 10.4049/jimmunol.1500530. PMID: 26138638.
Article
67. Choi SJ, Kim MH, Jeon J, Kim OY, Choi Y, Seo J, et al. Active immunization with extracellular vesicles derived from Staphylococcus aureus effectively protects against Staphylococcal lung infections, mainly via Th1 Cell-mediated immunity. PLoS ONE. 2015; 10:e0136021. DOI: 10.1371/journal.pone.0136021. PMID: 26333035.
68. Iraci N, Gaude E, Leonardi T, Costa ASH, Cossetti C, Peruzzotti-Jametti L, et al. Extracellular vesicles are independent metabolic units with asparaginase activity. Nat Chem Biol. 2017; 13:951–955. DOI: 10.1038/nchembio.2422. PMID: 28671681.
Article
69. Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res. 2016; 109:397–408. DOI: 10.1093/cvr/cvv260. PMID: 26609058.
Article
70. Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature. 2017; 549:48–53. DOI: 10.1038/nature23874. PMID: 28854168.
Article
Full Text Links
  • TCP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr