Clin Exp Vaccine Res.  2017 Jul;6(2):104-110. 10.7774/cevr.2017.6.2.104.

Animal models for dengue vaccine development and testing

Affiliations
  • 1College of Pharmacy, Korea University, Sejong, Korea. sds1@korea.ac.kr

Abstract

Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development.

Keyword

Dengue virus; Vaccines; Animal models

MeSH Terms

Animals*
Climate Change
Dengue Virus
Dengue*
Endemic Diseases
Humans
Korea
Mice
Models, Animal*
Vaccines
Vaccines

Reference

1. Singhi S, Kissoon N, Bansal A. Dengue and dengue hemorrhagic fever: management issues in an intensive care unit. J Pediatr (Rio J). 2007; 83(2 Suppl):S22–S35. PMID: 17530136.
Article
2. Murray NE, Quam MB, Wilder-Smith A. Epidemiology of dengue: past, present and future prospects. Clin Epidemiol. 2013; 5:299–309. PMID: 23990732.
3. Kutsuna S, Kato Y, Moi ML, et al. Autochthonous dengue fever, Tokyo, Japan, 2014. Emerg Infect Dis. 2015; 21:517–520. PMID: 25695200.
Article
4. Wilder-Smith A, Quam M, Sessions O, et al. The 2012 dengue outbreak in Madeira: exploring the origins. Euro Surveill. 2014; 19:20718. PMID: 24602277.
Article
5. Lee SH, Nam KW, Jeong JY, et al. The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan. PLoS One. 2013; 8:e68512. PMID: 23894312.
Article
6. Capeding MR, Tran NH, Hadinegoro SR, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014; 384:1358–1365. PMID: 25018116.
Article
7. Villar L, Dayan GH, Arredondo-Garcia JL, et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med. 2015; 372:113–123. PMID: 25365753.
Article
8. Guy B, Briand O, Lang J, Saville M, Jackson N. Development of the Sanofi Pasteur tetravalent dengue vaccine: one more step forward. Vaccine. 2015; 33:7100–7111. PMID: 26475445.
Article
9. Yung CF, Lee KS, Thein TL, et al. Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, Singapore. Am J Trop Med Hyg. 2015; 92:999–1005. PMID: 25825386.
Article
10. Liang H, Lee M, Jin X. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine. Cell Mol Immunol. 2016; 13:36–46. PMID: 26435066.
Article
11. Ferguson NM, Rodriguez-Barraquer I, Dorigatti I, Mier YT-RL, Laydon DJ, Cummings DA. Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment. Science. 2016; 353:1033–1036. PMID: 27701113.
Article
12. Bente DA, Rico-Hesse R. Models of dengue virus infection. Drug Discov Today Dis Models. 2006; 3:97–103. PMID: 18087566.
Article
13. Velandia-Romero ML, Calderon-Pelaez MA, Castellanos JE. In vitro infection with dengue virus induces changes in the structure and function of the mouse brain endothelium. PLoS One. 2016; 11:e0157786. PMID: 27336851.
Article
14. Guzman MG, Harris E. Dengue. Lancet. 2015; 385:453–465. PMID: 25230594.
Article
15. St John AL. Influence of mast cells on dengue protective immunity and immune pathology. PLoS Pathog. 2013; 9:e1003783. PMID: 24367254.
Article
16. Bente DA, Melkus MW, Garcia JV, Rico-Hesse R. Dengue fever in humanized NOD/SCID mice. J Virol. 2005; 79:13797–13799. PMID: 16227299.
Article
17. Mota J, Rico-Hesse R. Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J Virol. 2009; 83:8638–8645. PMID: 19535452.
Article
18. Sridharan A, Chen Q, Tang KF, Ooi EE, Hibberd ML, Chen J. Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J Virol. 2013; 87:11648–11658. PMID: 23966397.
Article
19. Wege AK, Melkus MW, Denton PW, Estes JD, Garcia JV. Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol. 2008; 324:149–165. PMID: 18481459.
Article
20. Huang CY, Butrapet S, Pierro DJ, et al. Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine. J Virol. 2000; 74:3020–3028. PMID: 10708416.
Article
21. Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E. Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol. 2005; 175:3946–3954. PMID: 16148142.
Article
22. Chen J, Ng MM, Chu JJ. Molecular profiling of T-helper immune genes during dengue virus infection. Virol J. 2008; 5:165. PMID: 19117515.
Article
23. Perry ST, Buck MD, Lada SM, Schindler C, Shresta S. STAT2 mediates innate immunity to Dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog. 2011; 7:e1001297. PMID: 21379341.
Article
24. Zust R, Toh YX, Valdes I, et al. Type I interferon signals in macrophages and dendritic cells control dengue virus infection: implications for a new mouse model to test dengue vaccines. J Virol. 2014; 88:7276–7285. PMID: 24741106.
Article
25. Marchette NJ, Halstead SB, Falkler WA Jr, Stenhouse A, Nash D. Studies on the pathogenesis of dengue infection in monkeys. 3. Sequential distribution of virus in primary and heterologous infections. J Infect Dis. 1973; 128:23–30. PMID: 4198025.
26. Halstead SB, Shotwell H, Casals J. Studies on the pathogenesis of dengue infection in monkeys. I. Clinical laboratory responses to primary infection. J Infect Dis. 1973; 128:7–14. PMID: 4198027.
Article
27. Halstead SB, Shotwell H, Casals J. Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. J Infect Dis. 1973; 128:15–22. PMID: 4198024.
Article
28. Onlamoon N, Noisakran S, Hsiao HM, et al. Dengue virus-induced hemorrhage in a nonhuman primate model. Blood. 2010; 115:1823–1834. PMID: 20042723.
Article
29. Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A. 2007; 104:9422–9427. PMID: 17517625.
Article
30. Robinson JS. Yucatan miniature swine as an animal model for dengue-1 disease. Bethesda, MD: Uniformed Services University of The Health Sciences;2005.
31. Cassetti MC, Durbin A, Harris E, et al. Report of an NIAID workshop on dengue animal models. Vaccine. 2010; 28:4229–4234. PMID: 20434551.
Article
32. Richter MK, da Silva Voorham JM, Torres Pedraza S, et al. Immature dengue virus is infectious in human immature dendritic cells via interaction with the receptor molecule DC-SIGN. PLoS One. 2014; 9:e98785. PMID: 24886790.
Article
33. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med. 2003; 197:823–829. PMID: 12682107.
Article
34. Qu X, Che C, Gao A, et al. Association of Dectin-1 and DC-SIGN gene single nucleotide polymorphisms with fungal keratitis in the northern Han Chinese population. Mol Vis. 2015; 21:391–402. PMID: 25883525.
35. Miller JL, de Wet BJ, Martinez-Pomares L, et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008; 4:e17. PMID: 18266465.
Article
36. GlobalData. OpportunityAnalyzer: dengue vaccines: opportunity analysis and forecasts to 2020. London: GlobalData;2014.
Full Text Links
  • CEVR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr