Nat Prod Sci.  2016 Sep;22(3):216-219. 10.20307/nps.2016.22.3.216.

New Production of Antibacterial Polycyclic Quinazoline Alkaloid, Thielaviazoline, from Anthranilic Acid by the Marine-Mudflat-Derived Fungus Thielavia sp.

Affiliations
  • 1Department of Chemistry, Pukyong National University, Busan 608-737, Korea. sonbw@pknu.ac.kr

Abstract

The microbial transformation of anthranilic acid (1) by the marine-mudflat-derived fungus Thielavia sp. produced an antibacterial polycyclic quinazoline alkaloid, thielaviazoline (2). The stereostructure of the metabolite was assigned based on detailed spectroscopic data analyses including comparison of the NMR (¹H and ¹³C) data with those of reported compound (2). Compound 2 displayed in vitro antimicrobial activity against methicillin-resistant and multidrug-resistant Staphylococcus aureus (MRSA and MDRSA), with minimum inhibitory concentrations (MICs) of 6.25 and 12.5 µg/mL, respectively. Compound 2 also showed potent radical-scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with an ICâ‚…â‚€ of 11 µM, which was more active than the positive control, L-ascorbic acid (ICâ‚…â‚€, 20.0 µM).

Keyword

Thielaviazoline; Polycyclic quinazoline alkaloid; Thielavia sp.; Microbial transformation

MeSH Terms

Ascorbic Acid
Fungi*
In Vitro Techniques
Methicillin Resistance
Microbial Sensitivity Tests
Staphylococcus aureus
Statistics as Topic
Ascorbic Acid

Figure

  • Fig. 1. Microbial synthesis of thielaviazoline (2) from anthranilicacid (1) by the marine-mudflat-derived fungus Thielavia sp.

  • Fig. 2. EI-MS fragmentation for thielaviazoline (2).


Reference

(1). Lee I. -S., ElSohly H. N., Hufford C. D.Pharm. Res. 1990; 7:199–203.
Article
(2). El Sayed K. A., Hamann M. T., Waddling C. A., Jensen C., Lee S. K., Dunstan C. A., Pezzuto J. M. J.Org. Chem. 1998; 63:7449–7455.
(3). Li X., Lee S. M., Choi H. D., Kang J. S., Son B. W.Chem. Pharm. Bull. 2003; 51:1458–1459.
(4). Li X., Kim S. -K., Jung J. H., Kang J. S., Choi H. D., Son B. W.Bull. Korean Chem. Soc. 2005; 26:1889–1890.
(5). Li X., Kim Y. H., Jung J. H., Kang J. S., Kim D. -K., Choi H. D., Son B. W.Enz. Microbial Technol. 2007; 40:1188–1192.
(6). Leutou A. S., Yang G., Nenkep V. N., Siwe X. N., Feng Z., Khong T. T., Choi H. D., Kang J. S., Son B. W. J.Microbiol. Biotechnol. 2009; 19:1150–1152.
(7). Feng Z., Nenkep V., Yun K., Zhang D., Choi H. D., Kang J. S., Son B. W. J.Microbiol. Biotechnol. 2010; 20:985–987.
(8). Yun K., Kondempudi C. M., Choi H. D., Kang J. S., Son B. W.Chem. Pharm. Bull. 2011; 59:499–501.
(9). Leutou A. S., Yun K., Son B. W.Bull. Korean Chem. Soc. 2014; 35:2870–2872.
(10). Yun K., Kondempudi C. M., Leutou A. S., Son B. W.Bull. Korean Chem. Soc. 2015; 36:2391–2393.
(11). The Chemical Daily Co. 10, 889 of Chemical Products. The Chemical Daily Co., Ltd.;Japan: 1989. p. 499–500.
(12). Li Y., Li X., Son B. W.Nat. Prod. Sci. 2005; 11:136–138.
(13). Smith R. V., Rosazza J. P. J.Pharm. Sci. 1975; 64:1737–1759.
Article
(14). Manske R. H. F., Holmes H. L.The Alkaloids – Chemistry and Pharmacology. Vol. III; Academic Press: USA. 1953; 101–111.
(15). Xiao X., Fanwick P. E., Cushman M.Synth. Commun. 2004; 34:3901–3907.
(16). Younes E. A., Hussein A. Q., May M. A., Fronczek F. R.ARKIVOC. 2011; 2:323–330.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr