Nutr Res Pract.  2014 Aug;8(4):368-376.

Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucose

Affiliations
  • 1Department of Clinical Nutrition, Shenzhen Traditional Chinese Medicine Hospital, China.
  • 2Department of Central Laboratory, Shenzhen Traditional Chinese Medicine Hospital, China.
  • 3Department of Health Education, Shenzhen Traditional Chinese Medicine Hospital, China.
  • 4Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China. chinazxlee@163.com
  • 5Department of Cardiovascular Medicine, Shenzhen Traditional Chinese Medicine Hospital, China.

Abstract

BACKGROUND/OBJECTIVES
The objectives of this study were to investigate the effects of lycopene on the migration, adhesion, tube formation capacity, and p38 mitogen-activated protein kinase (p38 MAPK) activity of endothelial progenitor cells (EPCs) cultivated with high glucose (HG) and as well as explore the mechanism behind the protective effects of lycopene on peripheral blood EPCs.
MATERIALS/METHODS
Mononuclear cells were isolated from human peripheral blood by Ficoll density gradient centrifugation. EPCs were identified after induction of cellular differentiation. Third generation EPCs were incubated with HG (33 mmol/L) or 10, 30, and 50 microg/mL of lycopene plus HG. MTT assay and flow cytometry were performed to assess proliferation and apoptosis of EPCs. EPC migration was assessed by MTT assay with a modified boyden chamber. Adhesion assay was performed by replating EPCs on fibronectin-coated dishes, after which adherent cells were counted. In vitro vasculogenesis activity was assayed by Madrigal network formation assay. Western blotting was performed to analyze protein expression of both phosphorylated and non-phosphorylated p38 MAPK.
RESULTS
The proliferation, migration, adhesion, and in vitro vasculogenesis capacity of EPCs treated with 10, 30, and 50 microg/mL of lycopene plus HG were all significantly higher comapred to the HG group (P < 0.05). Rates of apoptosis were also significantly lower than that of the HG group. Moreover, lycopene blocked phosphorylation of p38 MAPK in EPCs (P < 0.05). To confirm the causal relationship between MAPK inhibition and the protective effects of lycopene against HG-induced cellular injury, we treated cells with SB203580, a phosphorylation inhibitor. The inhibitor significantly inhibited HG-induced EPC injury.
CONCLUSIONS
Lycopene promotes proliferation, migration, adhesion, and in vitro vasculogenesis capacity as well as reduces apoptosis of EPCs. Further, the underlying molecular mechanism of the protective effects of lycopene against HG-induced EPC injury may involve the p38 MAPK signal transduction pathway. Specifically, lycopene was shown to inhibit HG-induced EPC injury by inhibiting p38 MAPKs.

Keyword

Lycopene; high glucose; endothelial progenitor cells; p38 MAPK; curve fitting

MeSH Terms

Apoptosis
Blotting, Western
Centrifugation, Density Gradient
Ficoll
Flow Cytometry
Glucose*
Humans
p38 Mitogen-Activated Protein Kinases
Phosphorylation
Protein Kinases
Signal Transduction
Stem Cells*
Ficoll
Glucose
Protein Kinases
p38 Mitogen-Activated Protein Kinases

Figure

  • Fig. 1 Characterization of EPCs under laser-scaning confocal microscope (×200). Under the laser confocal microscope, Dil-Ac-LDL (red, excitation wavelength 543 nm) and Ulex lectin FITC-I(green, excitation wavelength 477 nm) double stained positive cells were differentiating EPCs

  • Fig. 2 Effects of lycopene on vasculogenesis activity of EPCs (×100). Compared with the other dose lycopene groups(10,50 µg/mL )and signal blockers, microvascular structures of 30 µg/mL lycopene group were more complex and complete. Representative pictures of the tube formation of EPCs with different treatments are shown. NC: normal control group;HG:High glucose group; SB203580:p38 MAPK inhibitor.

  • Fig. 3 Effects of lycopene on high glucose induced activation of p38 MAPKs in EPCs. Compare with NC, *P < 0.05;Compare with HG, ▵P < 0.05; Compare with 30 µg/mL lycopene group, ▴P < 0.05. NC: normal control group; HG: High glucose group; SB203580: p38 MAPK inhibitor.

  • Fig. 4 Curve fitting figures of effects of lycopene on EPCs in high concentration of glucose


Reference

1. Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med. 2004; 164:1422–1426.
Article
2. Avogaro A, Fadini GP, Gallo A, Pagnin E, de Kreutzenberg S. Endothelial dysfunction in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2006; 16:Suppl 1. S39–S45.
Article
3. Cubbon RM, Kahn MB, Wheatcroft SB. Effects of insulin resistance on endothelial progenitor cells and vascular repair. Clin Sci (Lond). 2009; 117:173–190.
Article
4. Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 2003; 107:461–468.
Article
5. Fadini GP, Avogaro A. Potential manipulation of endothelial progenitor cells in diabetes and its complications. Diabetes Obes Metab. 2010; 12:570–583.
Article
6. Reinhard H, Jacobsen PK, Lajer M, Pedersen N, Billestrup N, Mandrup-Poulsen T, Parving HH, Rossing P. Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes. Diabetologia. 2010; 53:2129–2133.
Article
7. Liao YF, Chen LL, Zeng TS, Li YM, Fan Y, Hu LJ, Ling Y. Number of circulating endothelial progenitor cells as a marker of vascular endothelial function for type 2 diabetes. Vasc Med. 2010; 15:279–285.
Article
8. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest. 2000; 106:571–578.
Article
9. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest. 2005; 115:572–583.
Article
10. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348:593–600.
Article
11. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005; 45:1449–1457.
Article
12. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004; 53:195–199.
13. Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation. 2003; 108:1527–1532.
14. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes. 2007; 56:1559–1568.
Article
15. Sheu ML, Ho FM, Yang RS, Chao KF, Lin WW, Lin-Shiau SY, Liu SH. High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol. 2005; 25:539–545.
Article
16. Yoshizumi M, Abe J, Tsuchiya K, Berk BC, Tamaki T. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J Pharmacol Sci. 2003; 91:172–176.
Article
17. Uruno A, Sugawara A, Kudo M, Satoh F, Saito A, Ito S. Stimulatory effects of low-dose 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor fluvastatin on hepatocyte growth factor-induced angiogenesis: involvement of p38 mitogen-activated protein kinase. Hypertens Res. 2008; 31:2085–2096.
Article
18. McGinn S, Saad S, Poronnik P, Pollock CA. High glucose-mediated effects on endothelial cell proliferation occur via p38 MAP kinase. Am J Physiol Endocrinol Metab. 2003; 285:E708–E717.
Article
19. Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989; 274:532–538.
Article
20. Sesso HD, Buring JE, Norkus EP, Gaziano JM. Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in women. Am J Clin Nutr. 2004; 79:47–53.
Article
21. Martin KR, Wu D, Meydani M. The effect of carotenoids on the expression of cell surface adhesion molecules and binding of monocytes to human aortic endothelial cells. Atherosclerosis. 2000; 150:265–274.
Article
22. Kim GY, Kim JH, Ahn SC, Lee HJ, Moon DO, Lee CM, Park YM. Lycopene suppresses the lipopolysaccharide-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and nuclear factor-kappaB. Immunology. 2004; 113:203–211.
Article
23. Chan CM, Fang JY, Lin HH, Yang CY, Hung CF. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways. Biochem Biophys Res Commun. 2009; 388:172–176.
Article
24. Van Craenenbroeck EM, Conraads VM. Endothelial progenitor cells in vascular health: focus on lifestyle. Microvasc Res. 2010; 79:184–192.
Article
25. Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S, Inden Y, Murohara T. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol. 2004; 24:1442–1447.
Article
26. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res. 2001; 88:167–174.
Article
27. Lin CY, Huang CS, Hu ML. The use of fetal bovine serum as delivery vehicle to improve the uptake and stability of lycopene in cell culture studies. Br J Nutr. 2007; 98:226–232.
Article
28. Azuma K, Kawamori R, Toyofuku Y, Kitahara Y, Sato F, Shimizu T, Miura K, Mine T, Tanaka Y, Mitsumata M, Watada H. Repetitive fluctuations in blood glucose enhance monocyte adhesion to the endothelium of rat thoracic aorta. Arterioscler Thromb Vasc Biol. 2006; 26:2275–2280.
Article
29. Wang H, Wang L, Li KZ, Ling R, Sun BH, Ma FC, Li XJ. Culture and identification of endothelial progenitor cells from human peripheral blood. Chin J Clin Rehabil. 2006; 10:47–49.
30. Wang HX, Zhao S, Li BG, Mao H, Shao SY. Effects of high-glucose on proliferation and apoptosis in endothelial progenitor cells of type 2 diabetes mellitus. Chin J Pathophysiol. 2007; 23:2210–2213.
31. Kuwana M, Okazaki Y, Kodama H, Satoh T, Kawakami Y, Ikeda Y. Endothelial differentiation potential of human monocyte-derived multipotential cells. Stem Cells. 2006; 24:2733–2743.
Article
32. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002; 106:2781–2786.
Article
33. Nakamura N, Naruse K, Kobayashi Y, Matsuki T, Hamada Y, Nakashima E, Kamiya H, Hata M, Nishikawa T, Enomoto A, Takahashi M, Murohara T, Matsubara T, Oiso Y, Nakamura J. High glucose impairs the proliferation and increases the apoptosis of endothelial progenitor cells by suppression of Akt. J Diabetes Investig. 2011; 2:262–270.
Article
34. Gianetti J, Pedrinelli R, Petrucci R, Lazzerini G, De Caterina M, Bellomo G, De Caterina R. Inverse association between carotid intima-media thickness and the antioxidant lycopene in atherosclerosis. Am Heart J. 2002; 143:467–474.
Article
35. Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT. Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood). 2002; 227:900–907.
Article
36. Rissanen TH, Voutilainen S, Nyyssönen K, Salonen R, Kaplan GA, Salonen JT. Serum lycopene concentrations and carotid atherosclerosis: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2003; 77:133–138.
Article
37. Vaishampayan U, Hussain M, Banerjee M, Seren S, Sarkar FH, Fontana J, Forman JD, Cher ML, Powell I, Pontes JE, Kucuk O. Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer. 2007; 59:1–7.
Article
38. Ylönen K, Alfthan G, Groop L, Saloranta C, Aro A, Virtanen SM. Dietary intakes and plasma concentrations of carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk of type 2 diabetes: the Botnia Dietary Study. Am J Clin Nutr. 2003; 77:1434–1441.
Article
39. Liu X, Qu D, He F, Lu Q, Wang J, Cai D. Effect of lycopene on the vascular endothelial function and expression of inflammatory agents in hyperhomocysteinemic rats. Asia Pac J Clin Nutr. 2007; 16:Suppl 1. 244–248.
40. Balestrieri ML, De Prisco R, Nicolaus B, Pari P, Moriello VS, Strazzullo G, Iorio EL, Servillo L, Balestrieri C. Lycopene in association with alpha-tocopherol or tomato lipophilic extracts enhances acylplatelet-activating factor biosynthesis in endothelial cells during oxidative stress. Free Radic Biol Med. 2004; 36:1058–1067.
Article
41. Suganuma H, Inakuma T. Protective effect of dietary tomato against endothelial dysfunction in hypercholesterolemic mice. Biosci Biotechnol Biochem. 1999; 63:78–82.
Article
42. Lowe GM, Booth LA, Young AJ, Bilton RF. Lycopene and beta-carotene protect against oxidative damage in HT29 cells at low concentrations but rapidly lose this capacity at higher doses. Free Radic Res. 1999; 30:141–151.
Article
43. Yeh S, Hu M. Antioxidant and pro-oxidant effects of lycopene in comparison with beta-carotene on oxidant-induced damage in Hs68 cells. J Nutr Biochem. 2000; 11:548–554.
Article
44. Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev. 2006; 22:198–203.
Article
45. Tamareille S, Mignen O, Capiod T, Rücker-Martin C, Feuvray D. High glucose-induced apoptosis through store-operated calcium entry and calcineurin in human umbilical vein endothelial cells. Cell Calcium. 2006; 39:47–55.
Article
46. Kuki S, Imanishi T, Kobayashi K, Matsuo Y, Obana M, Akasaka T. Hyperglycemia accelerated endothelial progenitor cell senescence via the activation of p38 mitogen-activated protein kinase. Circ J. 2006; 70:1076–1081.
Article
47. Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C, Rössig L, Corbaz A, Chvatchko Y, Zeiher AM, Dimmeler S. p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation. 2005; 111:1184–1191.
Article
48. Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda AR. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell. 2000; 6:109–116.
Article
Full Text Links
  • NRP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr