Anat Cell Biol.  2011 Mar;44(1):50-59. 10.5115/acb.2011.44.1.50.

The effects of electrical shock on the expressions of aquaporin subunits in the rat spinal cords

Affiliations
  • 1Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Korea. tckang@hallym.ac.kr
  • 2Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Korea.
  • 3Department of Surgery, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea.
  • 4Department of Rehabilitation, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea.
  • 5Department of Psychiatry, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea.
  • 6Department of Neurosurgery, Graduate School, School of Medicine, Kyung Hee University, Seoul, Korea.

Abstract

We analyzed aquaporin (AQP) expression in the rat spinal cord following an electrical shock (ES) to elucidate the roles of AQP in spinal cord injury (SCI) induced by an electrical burn. In control animals, AQP1 immunoreactivity was observed in the small diameter dorsal horn fibers of laminae I and II and in astrocytes and neurons in the spinal cord. Both AQP4 and AQP9 immunoreactivity were detected in astrocytes. One week after the ES, AQP1 immunoreactivity in dorsal horn fibers was downregulated to 83, 61, and 33% of control levels following a 1-, 4-, or 6-second ES, respectively. However, AQP1 immunoreactivity in ventral horn neurons increased to 1.3-, 1.5-, and 2.4-fold of control levels following a 1-, 4-, or 6-second ES, respectively. AQP4 immunoreactivity was upregulated after an ES in laminae I and II astrocytes in a stimulus-intensity independent manner. Unlike AQP1 and AQP4, AQP9 immunoreactivity was unaffected by the ES. These findings indicate that altered AQP immunoreactivity may be involved in SCI following an ES.

Keyword

Aquaporins; Astrocytes; Neurons; Spinal cord; Electrical shock

MeSH Terms

Animals
Anterior Horn Cells
Aquaporins
Astrocytes
Burns
Horns
Neurons
Rats
Shock
Spinal Cord
Spinal Cord Injuries
Aquaporins

Figure

  • Fig. 1 Aquaporin (AQP)1 immunoreactivity in rat spinal cord following an electrical shock (ES). (A) Control. (B) 1 s ES. (C) 4 s ES. (D) 6 s ES. In control rats, AQP1 immunoreactivity was observed in the small diameter dorsal horn fibers in laminae I and II. After the ES, AQP1 immunoreactivity in dorsal horn fibers was downregulated in a stimulus-intensity dependent manner (arrows, column 2). However, AQP1 immunoreactivity in neurons within the ventral horn was clearly upregulated in a stimulus-intensity dependent manner (arrows, column 3). Rectangles in column 1 indicate a region in columns 2 and 3, respectively. Scale bar=400 µm (column 1), 50 µm (columns 2, 3). (E) Quantitative analyses of AQP1 in the spinal cord following an ES (mean±SEM). Significant differences from control animals, *P<0.05, **P<0.01.

  • Fig. 2 Double immunofluorescent staining for aquaporins (AQPs), NeuN, or glial fibrillary acidic protein (GFAP) in the spinal cord. AQP1 immunoreactivity (A1, arrow) was not detected in NeuN-positive dorsal horn neurons of the 6-s electrical shock (ES) animals (A2, arrow). In the ventral horn, AQP1 immunoreactivity (B1, C1) was observed in GFAP astrocytes (B2, arrows) and NeuN-positive neurons (C2, arrows). AQP4 (D1, arrows) and AQP9 (E1, arrows) immunoreactivity was detected in GFAP astrocytes (D2, E2, arrows). Blue (column 3) is DAPI counterstaining. Column 4 is a merged-image. Scale bar=12.5 µm.

  • Fig. 3 Aquaporin (AQP)4 immunoreactivity in the rat spinal cord following an electrical shock (ES). (A) Control. (B) 1 s ES. (C) 4 s ES. (D) 6 s ES. After the ES, AQP4 immunoreactivity was upregulated in astrocytes within laminae I and II in a stimulus-intensity independent manner (column 2). However, AQP4 immunoreactivity in the ventral horn was unaffected by the ES. Rectangles in column 1 indicate a region in columns 2 and 3, respectively. Scale bar=400 µm (column 1), 50 µm (columns 2, 3). (E) Quantitative analyses of AQP4 in the spinal cord following an ES (mean±SEM). Significant differences from control animals, *P<0.05, **P<0.01.

  • Fig. 4 Aquaporin (AQP)9 immunoreactivity in the rat spinal cord following an electrical shock (ES). (A) Control. (B) 1 s ES. (C) 4 s ES. (D) 6 s ES. Unlike AQP1 and AQP4, AQP9 immunoreactivity was unaffected by the ES. Rectangles in column 1 indicate a region in columns 2 and 3, respectively. Scale bar=400 µm (column 1), 50 µm (columns 2, 3). (E) Quantitative analyses of AQP9 in the spinal cord following an ES (mean±SE). Significant differences from control animals.


Cited by  1 articles

The beneficial influence of rhubarb on 5-fluorouracil-induced ileal mucositis and the combined role of aquaporin-4, tumour necrosis factor-α, nuclear factor-kappa B & matrix metalloproteinase-9 in rat model: histological study
Samaa Samir Kamar, Mostafa Hasan Baky, Abeer Ibraheem Omar
Anat Cell Biol. 2020;53(2):228-239.    doi: 10.5115/acb.20.014.


Reference

1. Skoog T. Electrical injuries. J Trauma. 1970. 10:816–830.
2. Baxter CR. Present concepts in the management of major electrical injury. Surg Clin North Am. 1970. 50:1401–1418.
3. Xiang D, Shen Z. Experimental high-voltage electrical burns on limbs of rabbits. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 1998. 14:429–432.
4. Segal JL, Maltby BF, Langdorf MI, Jacobson R, Brunnemann SR, Jusko WJ. Methylprednisolone disposition kinetics in patients with acute spinal cord injury. Pharmacotherapy. 1998. 18:16–22.
5. Ko SH, Chun W, Kim HC. Delayed spinal cord injury following electrical burns: a 7-year experience. Burns. 2004. 30:691–695.
6. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S. Aquaporin water channels: from atomic structure to clinical medicine. J Physiol. 2002. 542(Pt 1):3–16.
7. Verkman AS. Role of aquaporins in endothelial water transport. J Anat. 2002. 200:528.
8. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000. 6:159–163.
9. Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002. 22:367–378.
10. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003. 4:991–1001.
11. Badaut J, Hirt L, Granziera C, Bogousslavsky J, Magistretti PJ, Regli L. Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2001. 21:477–482.
12. Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frøkiaer J, Nielsen S. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun. 2000. 276:1118–1128.
13. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997. 17:171–180.
14. Venero JL, Vizuete ML, Ilundáin AA, Machado A, Echevarria M, Cano J. Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience. 1999. 94:239–250.
15. Yamamoto N, Yoneda K, Asai K, Sobue K, Tada T, Fujita Y, Katsuya H, Fujita M, Aihara N, Mase M, Yamada K, Miura Y, Kato T. Alterations in the expression of the AQP family in cultured rat astrocytes during hypoxia and reoxygenation. Brain Res Mol Brain Res. 2001. 90:26–38.
16. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 2005. 19:76–78.
17. Shields SD, Mazario J, Skinner K, Basbaum AI. Anatomical and functional analysis of aquaporin 1, a water channel in primary afferent neurons. Pain. 2007. 131:8–20.
18. Li S, Tator CH. Effects of MK801 on evoked potentials, spinal cord blood flow and cord edema in acute spinal cord injury in rats. Spinal Cord. 1999. 37:820–832.
19. Sharma HS, Badgaiyan RD, Alm P, Mohanty S, Wiklund L. Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injury-induced pathophysiology and motor functions: an experimental study in the rat. Ann N Y Acad Sci. 2005. 1053:422–434.
20. Verkman AS, Mitra AK. Structure and function of aquaporin water channels. Am J Physiol Renal Physiol. 2000. 278:F13–F28.
21. Badaut J, Petit JM, Brunet JF, Magistretti PJ, Charriaut-Marlangue C, Regli L. Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience. 2004. 128:27–38.
22. Badaut J, Regli L. Distribution and possible roles of aquaporin 9 in the brain. Neuroscience. 2004. 129:971–981.
23. Pérez E, Barrachina M, Rodríguez A, Torrejón-Escribano B, Boada M, Hernández I, Sánchez M, Ferrer I. Aquaporin expression in the cerebral cortex is increased at early stages of Alzheimer disease. Brain Res. 2007. 1128:164–174.
24. Rodríguez A, Pérez-Gracia E, Espinosa JC, Pumarola M, Torres JM, Ferrer I. Increased expression of water channel aquaporin 1 and aquaporin 4 in Creutzfeldt-Jakob disease and in bovine spongiform encephalopathy-infected bovine-PrP transgenic mice. Acta Neuropathol. 2006. 112:573–585.
25. Chen Y, Tachibana O, Oda M, Xu R, Hamada J, Yamashita J, Hashimoto N, Takahashi JA. Increased expression of aquaporin 1 in human hemangioblastomas and its correlation with cyst formation. J Neurooncol. 2006. 80:219–225.
26. Badaut J, Brunet JF, Grollimund L, Hamou MF, Magistretti PJ, Villemure JG, Regli L. Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Acta Neurochir Suppl. 2003. 86:495–498.
27. Ribeiro M, Beleza P, Fernandes J, Almeida F, Rocha J. Reverse crossed cerebellar diaschisis. Acta Med Port. 2006. 19:439–441.
28. Nesic O, Lee J, Unabia GC, Johnson K, Ye Z, Vergara L, Hulsebosch CE, Perez-Polo JR. Aquaporin 1: a novel player in spinal cord injury. J Neurochem. 2008. 105:628–640.
29. Oshio K, Song Y, Verkman AS, Manley GT. Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir Suppl. 2003. 86:525–528.
30. Oshio K, Watanabe H, Yan D, Verkman AS, Manley GT. Impaired pain sensation in mice lacking Aquaporin-1 water channels. Biochem Biophys Res Commun. 2006. 341:1022–1028.
31. Jablonski E, Webb A, Hughes FM Jr. Water movement during apoptosis: a role for aquaporins in the apoptotic volume decrease (AVD). Adv Exp Med Biol. 2004. 559:179–188.
32. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest. 1997. 100:957–962.
33. Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta. 2006. 1758:1085–1093.
34. Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004. 129:1021–1029.
35. Kimelberg HK. Current concepts of brain edema: review of laboratory investigations. J Neurosurg. 1995. 83:1051–1059.
36. Manley GT, Binder DK, Papadopoulos MC, Verkman AS. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience. 2004. 129:983–991.
37. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci. 2005. 118(Pt 24):5691–5698.
38. Nacimiento W, Töpper R, Fischer A, Oestreicher AB, Nacimiento AC, Gispen WH, Noth J, Kreutzberg GW. Immunocytochemistry of B-50 (GAP-43) in the spinal cord and in dorsal root ganglia of the adult cat. J Neurocytol. 1993. 22:413–424.
39. Perosa SR, Porcionatto MA, Cukiert A, Martins JR, Passeroti CC, Amado D, Matas SL, Nader HB, Cavalheiro EA, Leite JP, Naffah-Mazzacoratti MG. Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy. Brain Res Bull. 2002. 58:509–516.
40. Nesic O, Lee J, Johnson KM, Ye Z, Xu GY, Unabia GC, Wood TG, McAdoo DJ, Westlund KN, Hulsebosch CE, Regino Perez-Polo J. Transcriptional profiling of spinal cord injury-induced central neuropathic pain. J Neurochem. 2005. 95:998–1014.
41. Chesler M, Kaila K. Modulation of pH by neuronal activity. Trends Neurosci. 1992. 15:396–402.
42. Xiong ZQ, Stringer JL. Extracellular pH responses in CA1 and the dentate gyrus during electrical stimulation, seizure discharges, and spreading depression. J Neurophysiol. 2000. 83:3519–3524.
43. Melø TM, Nehlig A, Sonnewald U. Metabolism is normal in astrocytes in chronically epileptic rats: a (13)C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab. 2005. 25:1254–1264.
44. Dubé C, da Silva Fernandes MJ, Nehlig A. Age-dependent consequences of seizures and the development of temporal lobe epilepsy in the rat. Dev Neurosci. 2001. 23:219–223.
45. Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol. 1999. 277(5 Pt 2):F685–F696.
46. Kim JE, Ryu HJ, Yeo SI, Seo CH, Lee BC, Choi IG, Kim DS, Kang TC. Differential expressions of aquaporin subtypes in astroglia in the hippocampus of chronic epileptic rats. Neuroscience. 2009. 163:781–789.
47. Kim JE, Yeo SI, Ryu HJ, Kim MJ, Kim DS, Jo SM, Kang TC. Astroglial loss and edema formation in the rat piriform cortex and hippocampus following pilocarpine-induced status epilepticus. J Comp Neurol. 2010. 518:4612–4628.
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr