J Korean Acad Conserv Dent.  2002 Sep;27(5):451-462. 10.5395/JKACD.2002.27.5.451.

Distribution of ion channels in trigeminal ganglion neuron of rat

Affiliations
  • 1Department of Conservative Dentistry, College of Dentistry, Kyung Hee University, Korea.

Abstract

No abstract available.

Keyword

Immunocytochemistry

MeSH Terms

Animals
Immunohistochemistry
Ion Channels
Neurons
Rats
Trigeminal Ganglion
Ion Channels

Figure

  • Fig. 1 Fluorescent microscopic image of sodium channels.

  • Fig. 2 Microscopic image of sodium channels.

  • Fig. 3 Fluorescent microscopic image of N-type calcium channels. (×100)

  • Fig. 4 Microscopic image of N-type calcium channel. (×100)

  • Fig. 5 Fluorescent microscopic image of N-type calcium channels. (×400)

  • Fig. 6 Microscopic image of N-type calcium channels. (×400)

  • Fig. 7 Fluorescent microscopic image of P/Q type calcium channels.(×100)

  • Fig. 8 Microscopic image of P/Q type calcium channels.(×100)

  • Fig. 9 Fluorescent microscopic image of P/Q type calcium channels.(×400)

  • Fig. 10 Microscopic image of P/Q type calcium channels. (×400)

  • Fig. 11 Fluorescent microscopic image of Kir 2.1 potassium channels. (×100)

  • Fig. 12 Microscopic image of Kir 2.1 potassium channels. (×100)

  • Fig. 13 Fluorescent microscopic image of Kir 2.1 potassium channels. (×400)

  • Fig. 14 Microscopic image of Kir 2..1 potassium channels. (×400)

  • Fig. 15 Fluorescent microscopic image of Kv 4.2 potassium channels. (×100)

  • Fig. 16 Microscopic image of Kv 4.2 potassium channels. (×100)

  • Fig. 17 Fluorescent microscopic image of Kv 4.2 potassium channels. (×400)

  • Fig. 18 Microscopic image of Kv 4.2 potassium channels. (×400)

  • Fig. 19 Fluorescent microscopic image of BKCa potassium channels. (×100)

  • Fig. 20 Microscopic image of BKCa potassium channels. (×100)

  • Fig. 21 Fluorescent microscopic image of BKCa potassium channels. (×400)

  • Fig. 22 Microscopic image of BKCa potassium channels. (×400)


Reference

1. Ahlijanian MK, Westenbroek RE, Catterall WA. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian btain, spinal cord, and retina. Neuron. 1990. 4:819–832.
Article
2. Akopian AN, Sivilotti L, Wood JNA. tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996. 379:257–262.
Article
3. Alonso G, Widmer H. Clustering of Kv4.2 potassium channels in Phostsy.
Article
4. Barry DM, Xu H, Schuessler RB, Nerbonne JM. Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. Circ Res. 1998. 83:560–567.
Article
5. Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol. 1989. 51:367–384.
Article
6. Bignami A. Neuron-Glia Interrelations During Phylogeny. I. Phylogeny and Ontogeny of Glial Cells. 1995. New Jersey: Humanna;3–39.
7. Bossu JL, Feltz A. Patch-clamp study of the tetrodotoxin-resistant sodium current in group C sensory neurones. Neurosci Lett. 1984. 51:241–246.
Article
8. Brew H, Gray PT, Mobbs P. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature. 1986. 324:466–468.
Article
9. Brismar T, Collins VP. Inward rectifying potassium channels in human malignant glioma cells. Brain Res. 1989. 480:249–258.
Article
10. Caffrey JM, Eng DL, Black JA, Waxman SG, Kocsis JD. Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res. 1992. 592:283–297.
Article
11. Choi DW. Calcium-mediated neurotoxicity : relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988. 11:465–469.
Article
12. Clapham DE. Calcium signaling. Cell. 2007. 131:1047–1058.
Article
13. Cohen SA, Barchi RL. Voltage-dependent sodium channels. Int Rev Cytol. 1993. 137:55–103.
14. Cohen MW, Jones OT, Angelides KJ. Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent ω-conotoxin. J Neurosci. 1991. 11:1032–1039. Cooper, K., Rae, J. L., AND Deway, J. Inwardly rectifying potassium current in mammalian lens epithelial cells. Am J Physiol. 261 : C115-23.
Article
15. Doughty JM, Barnes-Davies M, Rusznak Z, Harasztosi C, Forsythe ID. Constructing Ca2+ channel subtypes at cell bodies and synaptic terminals of rat anterioventral cochlear bushy neurons. J Physiol. 1998. 512:365–376. Dunlap, K., Luebke, J. I., AND Turner, T. J. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 18 : 89-98, 1995.
Article
16. Elliott AA, Elliott JR. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol. 1993. 463:39–56.
Article
17. Fedulova SA, Kostyuk PG, Veselovsky NS. Ionic mechanisms of electrical excitability in rat sensory neurons during postnatal ontogenesis. Neuroscience. 1991. 41:303–309.
18. Harper AA, Lawson SN. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J Physiol. 1985a. 359:31–46.
Article
19. Harper AA, Lawson SN. Electrical properties of rat dorsal root ganglion neurons with different peripheral nerve conduction velocities. J Physiol. 1985b. 359:47–63.
Article
20. Haydon PG, Henderson E, Stanley E. Localization of individual calcium channels at the release face of a presynaptic nerve terminal. Neuron. 1994. 13:1275–1280.
Article
21. Hille B. Ionic channels of Excitable Membranes. 1992. Sunderland, MA: Sinauer.
22. Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988. 239:57–61.
Article
23. Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952. 116:449–472.
24. Hoffman DA, Magee JC, Colbert CM, Johnston D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 1997. 387:869–875.
Article
25. Holz GG, Dunlap K, Kream RM. Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons : methods and dihydropyridine sensitivity. J Neurosci. 1988. 8:463–471.
Article
26. Ishii M, Horio Y, Tada Y, Hibino H, Inanobe A, Ito M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y. Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Muller cell membrane: the regulation by insulin and laminin signals. J Neurosci. 1997. 17:7725–7735.
Article
27. Jan LY, Jan YN. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci. 1997. 20:91–123.
Article
28. Josephson IR. Properties of inwardly rectifying K+ channels in venricular myocytes. Mol Cell Biochem. 1988. 80:21–26.
Article
29. Kaczorowski GJ, Knaus HG, Leonard RJ, Mcmanus OB, Garcia ML. High-conductance calcium-activated potassium channels : structure, pharmacology, and function. J Bioenerg Biomembr. 1996. 28:255–267.
Article
30. Kostyuk PG, Veselovsky NS, Fedulova SA, Tsyndrenko AY. Ionic currents in the somatic membrane of rat dorsal root ganglion neurons - I. Sodium currents. Neuroscience. 1981. 6:2423–2430.
Article
31. Kusaks S, Puro DG. Intracellular AYP activates inwardly rectifying K+ channels in human and monkey retinal Muller (glial) cells. J Physiol. 1997. 500:593–604.
32. Llinas R, et al. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FIX) from the funnel web spider poison. Proc Natl Acad Sci USA. 1989. 86:1689–1693.
33. Maletic-Savatic M, Lenn NJ, TRIMMER JS. Differential spatiotemporal expression of K+ channel polypeptides in rat hippocampal neurons developing in situ and in vitro. J Neurosci. 1995. 15:3840–3851.
Article
34. Marty A. The physiological role of calcium-dependent channels. Trends Neurosci. 1989. 12:420–424.
Article
35. McCleskey EW. Calcium channels : Celluar roles and molecular mechanisms. Curr Opin Neurobiol. 1994. 4:304–312.
36. Mclarnon JG, Kim SU. Existence of inward potassium currents in adult human oligodendrocytes. Neurosci Lett. 1989. 101:107–112.
Article
37. McLean MJ, Bennet PB, Thomas RM. Subtypes of dorsal root ganglion neurons based on different inward currents as measured by whole cell voltage clamp. Mol Cell Biochem. 1988. 80:94–107.
Article
38. Miller RJ. Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J. 1990. 4:3291–3299.
Article
39. Mills LR, Niesen CE, So AP, Carlen PL, Spigelman I, Jones OT. N-type Ca2+ channels are located on somata, dendrites and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J Neurosci. 1994. 14:6815–6824.
Article
40. Mintz I, et al. P type calcium channels in rat central and peripheral neurons. Neuron. 1992. 9:85–95.
Article
41. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995. 270:633–637.
Article
42. Newman EA. Inward-rectifying potassium channels in retinal glial (Muller) cells. J Neurosci. 1993. 13:3333–3345.
Article
43. Nilius B, Schwarz G, Droogmans G. Modulation by histamine of an inwardly rectifying potassium channel in huma endotherial cells. J Physiol. 1993. 472:359–371.
Article
44. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984. 308:693–698.
Article
45. Ogata N, Tatebayashi H. Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia. J Physiol. 1993. 466:9–37.
46. Ogata N, Tatebayashi H. Ontogenic development of the TTX-sensitive and TTX-insensitive Na+ channels in neurons of the rat dorsal root ganglia. Brain Res Dev Brain Res. 1992a. 65:93–100.
Article
47. Ogata N, Tatebayashi H. Slow inactivation of tetrodotoxin-insensitive Na+ channels in neurons of rat dorsal root ganglia. J Membr Biol. 1992b. 129:71–80.
Article
48. Perney TM, Hirning LD, Leeman SE, Miller RJ. Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc Natl Acad Sci U S A. 1986. 83:6656–6659.
Article
49. Puil E, Gimbarzevsky B, Miura RM. Quantification of membrane properties of trigeminal root gangion neurons in guinea pigs. J Neurophysiol. 1986. 55:995–1016.
Article
50. Randall A, Tsien R. Pharmacological dissection of multiple types of calcium channel currents in rat cerebellar granule neurons. J Neurosci. 1992. 15(4):2995–3012.
Article
51. Regehr WG, Mintz IM. Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron. 1900. 12:605–613.
Article
52. Robitaille R, Adler EM, Charlton MP. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapes. Neuron. 1990. 5:773–779.
Article
53. Roy ML, Narahashi T. Differential properties of tetrodotoxin-sensitive and tetrodotoxin -resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci. 1992. 12:2104–2111.
Article
54. Schwartz A, Palti Y, Meiri H. Structural and developmental differences between three types of Na channels in dorsal root ganglion cells of newborn rats. J Membr Biol. 1990. 116:117–128.
Article
55. Serodio P, Vega-SaenzDeMiera E, Rudy B. Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol. 1900. 75:2174–2179.
Article
56. Sheng M, Tsaur MI, Jan YN. Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron. 1992. 2:271–284.
57. Silver MR, Decoursey TE. Intinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+. J Gen Physiol. 1990. 96:109–133.
Article
58. Song WJ, Tkatch T, Baranauskas G, IChinohe N, Kitai ST, Surmeier DJ. Somatodenditic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv42 and Kv 41 subunits. J Neurosci. 1998. 18:3124–3137.
Article
59. Stanley EF. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 1997. 20:404–409.
Article
60. Tkatch T, Baranauskas G, Surmerier DJ. Kv4.2 mRNA abundance and A-type K(+) current amplitude are linearly related in basal ganglia and basal forebrain neurons. J Neurosci. 2000. 20:579–588.
Article
61. Torri-Tarelli F, Passafaro M, Clementi F, Sher M. Presynaptic localization of omegaconotoxin-sensitive calcium channels at the frog neuromuscular junction. Brain Res. 1991. 547:331–334.
62. Tsien RW, Lipscombe D, Mandison DV, Bley K, Fox A. Reflections on Ca2+ channel diversity, 1984-1994. Trends Neurosci. 1995. 18:52–54.
63. Tsien RW, Lipscomble D, Mandison DV, Bley K, Fox A. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 1988. 11:431–438.
Article
64. Vergara C, Latorre R, Marrion NV, Adelman JP. Calcium-activated potassium channels. Curr Opin Neurobiol. 1998. 8:321–329.
Article
65. Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature. 1990. 347:281–284.
Article
66. Westenbroek RE, Sakurai T, Elliot EM, et al. Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci. 1995. 15:6403–6418.
Article
67. Wong RKS, Prince DA. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Research. 1978. 159:385–390.
Article
68. Wu LG, Westenbroek RE, Borst JGG, Catteral WA, Sakmann B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci. 1999. 19:726–736.
Article
Full Text Links
  • JKACD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr