Korean J Physiol Pharmacol.  2024 Mar;28(2):145-152. 10.4196/kjpp.2024.28.2.145.

Exercise alleviates cisplatin-induced toxicity in the hippocampus of mice by inhibiting neuroinflammation and improving synaptic plasticity

Affiliations
  • 1Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Korea
  • 2Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea

Abstract

Chemotherapy-induced cognitive impairment is recognized as the most typical symptom in patients with cancer that occurs during and following the chemotherapy treatment. Recently many studies focused on pharmaceutical strategies to control the chemotherapy side effects, however it is far from satisfactory. There may be a need for more effective treatment options. The aim of this study was to investigate the protective effect of exercise on cisplatin-induced neurotoxicity. Eightweek-old C57BL6 mice were separated into three group: normal control (CON, n = 8); cisplatin injection control (Cis-CON, n = 8); cisplatin with aerobic exercise (Cis-EXE, n = 8). Cisplatin was administered intraperitoneally at a dose of 3.5 mg/kg/day. The Cis-EXE group exercise by treadmill running (14–16 m/min for 45 min daily, 3 times/ week) for 12 weeks. Compared to the CON group, the cisplatin injection groups showed significant decrease in body weight and food intake, indicating successful induction of cisplatin toxicity. The Cis-CON group showed significantly increased levels of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α in the hippocampus, while the Cis-EXE group was significantly decreased in the expression of IL-6, IL-1β, and TNF-α. In addition, compared to the CON group, the levels of synapserelated proteins including synapsin-1 and -2 were significantly reduced in the CisCON group, and there was a significant difference between the Cis-CON and Cis-EXE groups. Antioxidant and apoptosis factors were significantly improved in the Cis-EXE group compared with the Cis-CON group. This study suggest that exercise could be meaningful approach to prevent or improve cisplatin-induced cognitive impairment.

Keyword

Cisplatin; Exercise; Hippocampus; Inflammation; Synaptic plasticity

Figure

  • Fig. 1 The experiment procedure of the study.

  • Fig. 2 Evaluation of cisplatin-induced toxicity. (A) Weekly change of body weight. (B) Compared to CON group, the body weight (F = 26.07, p < 0.01) and (C) food intake (F = 71.58, p < 0.01) were significantly decreased in Cis and Cis-EXE groups in 3 weeks after cisplatin injection. Values are presented as mean ± SD. CON, control (n = 8); Cis, cisplatin injection (n = 8); Cis-EXE, aerobic exercise with cisplatin injection (n = 8). One-way analysis of variance and Tukey’s post-hoc were used for statistical analysis; ***p < 0.001.

  • Fig. 3 Expression levels of neuroinflammation cytokines in the hippocampus after cisplatin injection. (A) Representative Western blots of neuroinflammatory markers. Significant reduction in neuroinflammatory markers (B) IL-6 (F = 19.55, p < 0.01), (C) TNF-α (F = 45.43, p < 0.01), and (D) IL-1β (F = 37.75, p < 0.01) were observed in the Cis-EXE group compared to the Cis group. However, no significant difference were found in (E) IL-10 levels. Values are presented as mean ± SD. IL-6, interleukin 6; TNF-α, tumor necrosis factor alpha; IL-1β, interleukin 1 beta; IL-10, interleukin 10; GAPDH, glyceraldehyde-3-phosphate dehydrogenase. CON, control (n = 8); Cis, cisplatin injection (n = 8); Cis-EXE, aerobic exercise with cisplatin injection (n = 8). Bradford assay R2 = 0.993, ImageJ gamma value = 0.50. One-way analysis of variance and Tukey’s post-hoc were used for statistical analysis; **p < 0.01, ***p < 0.001.

  • Fig. 4 Expression levels of synaptic plasticity-related factors in the hippocampus after cisplatin injection. (A) Representative Western blots of synapse-related proteins. Compared to the Cis group, expression of the (B) synapsin-1 protein (F = 55.46, p < 0.01) was significantly increased in Cis-EXE group. Meanwhile, no significant difference were found in (C) synapsin-2 levels. Values are presented as mean ± SD. GAPDH, glyceraldehyde-3-phosphate dehydrogenase. CON, control (n = 8); Cis, cisplatin injection (n = 8); Cis-EXE, aerobic exercise with cisplatin injection (n = 8). Bradford assay R2 = 0.993, ImageJ gamma value = 0.50. One-way analysis of variance and Tukey’s post-hoc were used for statistical analysis; **p < 0.01, ***p < 0.001.

  • Fig. 5 Expression levels of antioxidant enzyme and apoptosis-related factors in the hippocampus after cisplatin injection. (A) Representative Western blots of antioxidant and apoptosis-related factors. (B) SOD was significantly increased in the Cis-EXE group compared to the Cis group (F = 57.71, p < 0.01). Despite there is no significant difference in the levels of apoptosis-related marker (C) caspase 3, there is a significant decrease in the level of (D) Bax in the Cis-EXE group compared to the Cis group (F = 31.56, p < 0.01) while there is a significant increase in (E) Bcl-2 levels (F = 20.12, p < 0.01). Values are presented as mean ± SD. SOD, super oxide dismutase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase. CON, control (n = 8); Cis, cisplatin injection (n = 8); Cis-EXE, aerobic exercise with cisplatin injection (n = 8). Bradford assay R2 = 0.993, ImageJ gamma value = 0.50. One-way analysis of variance and Tukey’s post-hoc were used for statistical analysis; *p < 0.05, **p < 0.01, ***p < 0.001.


Reference

1. Whitney KA, Lysaker PH, Steiner AR, Hook JN, Estes DD, Hanna NH. 2008; Is "chemobrain" a transient state? A prospective pilot study among persons with non-small cell lung cancer. J Support Oncol. 6:313–321.
2. Gan HK, Bernstein LJ, Brown J, Ringash J, Vakilha M, Wang L, Goldstein D, Kim J, Hope A, O'Sullivan B, Waldron J, Abdul Razak AR, Chen EX, Siu LL. 2011; Cognitive functioning after radiotherapy or chemoradiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 81:126–134. DOI: 10.1016/j.ijrobp.2010.05.004. PMID: 20708851.
Article
3. Skoogh J, Steineck G, Stierner U, Cavallin-Ståhl E, Wilderäng U, Wallin A, Gatz M, Johansson B. Swenoteca. 2012; Testicular-cancer survivors experience compromised language following chemotherapy: findings in a Swedish population-based study 3-26 years after treatment. Acta Oncol. 51:185–197. DOI: 10.3109/0284186X.2011.602113. PMID: 21851186.
Article
4. Erfani Majd N, Shahraki R, Tabandeh MR, Hosseinifar S. 2022; Protective effects of Aloe vera gel on cisplatin-induced oxidative stress, apoptosis and neurons structure in rat hippocampus. Vet Res Forum. 13:111–119.
5. Dasari S, Tchounwou PB. 2014; Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 740:364–378. DOI: 10.1016/j.ejphar.2014.07.025. PMID: 25058905. PMCID: PMC4146684.
Article
6. Ghosh S. 2019; Cisplatin: the first metal based anticancer drug. Bioorg Chem. 88:102925. DOI: 10.1016/j.bioorg.2019.102925. PMID: 31003078.
Article
7. Fung C, Dinh P Jr, Ardeshir-Rouhani-Fard S, Schaffer K, Fossa SD, Travis LB. 2018; Toxicities associated with cisplatin-based chemotherapy and radiotherapy in long-term testicular cancer survivors. Adv Urol. 2018:8671832. DOI: 10.1155/2018/8671832. PMID: 29670654. PMCID: PMC5835297.
Article
8. Zhou W, Kavelaars A, Heijnen CJ. 2016; Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS One. 11:e0151890. DOI: 10.1371/journal.pone.0151890. PMID: 27018597. PMCID: PMC4809545.
Article
9. Das A, Ranadive N, Kinra M, Nampoothiri M, Arora D, Mudgal J. 2020; An overview on chemotherapy-induced cognitive impairment and potential role of antidepressants. Curr Neuropharmacol. 18:838–851. DOI: 10.2174/1570159X18666200221113842. PMID: 32091339. PMCID: PMC7569321.
Article
10. Umfress A, Speed HE, Tan C, Ramezani S, Birnbaum S, Brekken RA, Sun X, Plattner F, Powell CM, Bibb JA. 2021; Neuropathological effects of chemotherapeutic drugs. ACS Chem Neurosci. 12:3038–3048. DOI: 10.1021/acschemneuro.1c00338. PMID: 34370453. PMCID: PMC8713594.
Article
11. Yoo KH, Tang JJ, Rashid MA, Cho CH, Corujo-Ramirez A, Choi J, Bae MG, Brogren D, Hawse JR, Hou X, Weroha SJ, Oliveros A, Kirkeby LA, Baur JA, Jang MH. 2021; Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res. 81:3727–3737. DOI: 10.1158/0008-5472.CAN-20-3290. PMID: 33771896. PMCID: PMC8277702.
Article
12. Langella S, Sadiq MU, Mucha PJ, Giovanello KS, Dayan E. Alzheimer's Disease Neuroimaging Initiative. 2021; Lower functional hippocampal redundancy in mild cognitive impairment. Transl Psychiatry. 11:61. DOI: 10.1038/s41398-020-01166-w. PMID: 33462184. PMCID: PMC7813821.
Article
13. Amor S, Puentes F, Baker D, van der Valk P. 2010; Inflammation in neurodegenerative diseases. Immunology. 129:154–169. DOI: 10.1111/j.1365-2567.2009.03225.x. PMID: 20561356. PMCID: PMC2814458.
Article
14. Koronyo-Hamaoui M, Gaire BP, Frautschy SA, Alvarez JI. 2022; Editorial: role of inflammation in neurodegenerative diseases. Front Immunol. 13:958487. DOI: 10.3389/fimmu.2022.958487. PMID: 35799792. PMCID: PMC9253757.
Article
15. Englander EW. 2013; DNA damage response in peripheral nervous system: coping with cancer therapy-induced DNA lesions. DNA Repair (Amst). 12:685–690. DOI: 10.1016/j.dnarep.2013.04.020. PMID: 23684797. PMCID: PMC3733271.
Article
16. Wang D, Wang B, Liu Y, Dong X, Su Y, Li S. 2019; Protective effects of ACY-1215 against chemotherapy-related cognitive impairment and brain damage in mice. Neurochem Res. 44:2460–2469. DOI: 10.1007/s11064-019-02882-6. PMID: 31571096.
Article
17. Datta Chaudhuri A, Dasgheyb RM, DeVine LR, Bi H, Cole RN, Haughey NJ. 2020; Stimulus-dependent modifications in astrocyte-derived extracellular vesicle cargo regulate neuronal excitability. Glia. 68:128–144. DOI: 10.1002/glia.23708. PMID: 31469478.
Article
18. Upadhya R, Zingg W, Shetty S, Shetty AK. 2020; Astrocyte-derived extracellular vesicles: neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release. 323:225–239. DOI: 10.1016/j.jconrel.2020.04.017. PMID: 32289328. PMCID: PMC7299747.
Article
19. John JP, Sunyer B, Höger H, Pollak A, Lubec G. 2009; Hippocampal synapsin isoform levels are linked to spatial memory enhancement by SGS742. Hippocampus. 19:731–738. DOI: 10.1002/hipo.20553. PMID: 19140176.
Article
20. Yang R, Chang Q, Meng X, Gao N, Wang W. 2018; Prognostic value of systemic immune-inflammation index in cancer: a meta-analysis. J Cancer. 9:3295–3302. DOI: 10.7150/jca.25691. PMID: 30271489. PMCID: PMC6160683.
Article
21. Silva MS, de Andrade Gomes Y, de Sousa Cavalcante ML, Telles PVN, da Silva ACA, Severo JS, de Oliveira Santos R, Dos Santos BLB, Cavalcante GL, Rocha CHL, Palheta-Junior RC, de Cássia Meneses Oliveira R, Dos Santos RF, Sabino JPJ, Dos Santos AA, Tolentino Bento da Silva M. 2021; Exercise and pyridostigmine prevents gastric emptying delay and increase blood pressure and cisplatin-induced baroreflex sensitivity in rats. Life Sci. 267:118972. DOI: 10.1016/j.lfs.2020.118972. PMID: 33383052.
Article
22. Almeida AA, Correia TML, Pires RA, Silva DAD, Coqueiro RS, Machado M, Magalhães ACM, Queiroz RF, Soares TJ, Pereira R. 2022; Nephroprotective effect of exercise training in cisplatin-induced renal damage in mice: influence of training protocol. Braz J Med Biol Res. 55:e12116. DOI: 10.1590/1414-431x2022e12116. PMID: 35976270. PMCID: PMC9377535.
Article
23. Seo DY, Bae JH, Zhang D, Song W, Kwak HB, Heo JW, Jung SJ, Yun HR, Kim TN, Lee SH, Kim AH, Jeong DH, Kim HK, Han J. 2021; Effects of cisplatin on mitochondrial function and autophagy-related proteins in skeletal muscle of rats. BMB Rep. 54:575–580. DOI: 10.5483/BMBRep.2021.54.11.132. PMID: 34674798. PMCID: PMC8633523.
Article
24. Nan X, Sun Q, Xu X, Yang Y, Zhen Y, Zhang Y, Zhou H, Fang H. 2022; Forsythoside B ameliorates diabetic cognitive dysfunction by inhibiting hippocampal neuroinflammation and reducing synaptic dysfunction in ovariectomized mice. Front Aging Neurosci. 14:974690. DOI: 10.3389/fnagi.2022.974690. PMID: 36389075. PMCID: PMC9650402.
Article
25. Mille-Hamard L, Billat VL, Henry E, Bonnamy B, Joly F, Benech P, Barrey E. 2012; Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study. BMC Med Genomics. 5:29. DOI: 10.1186/1755-8794-5-29. PMID: 22748015. PMCID: PMC3473259.
Article
26. Garcia JM, Scherer T, Chen JA, Guillory B, Nassif A, Papusha V, Smiechowska J, Asnicar M, Buettner C, Smith RG. 2013; Inhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male mice. Endocrinology. 154:3118–3129. DOI: 10.1210/en.2013-1179. PMID: 23832960. PMCID: PMC3749475.
Article
27. Conte E, Bresciani E, Rizzi L, Cappellari O, De Luca A, Torsello A, Liantonio A. 2020; Cisplatin-induced skeletal muscle dysfunction: mechanisms and counteracting therapeutic strategies. Int J Mol Sci. 21:1242. DOI: 10.3390/ijms21041242. PMID: 32069876. PMCID: PMC7072891.
Article
28. Lin MT, Ko JL, Liu TC, Chao PT, Ou CC. 2018; Protective effect of D-methionine on body weight loss, anorexia, and nephrotoxicity in cisplatin-induced chronic toxicity in rats. Integr Cancer Ther. 17:813–824. DOI: 10.1177/1534735417753543. PMID: 29430988. PMCID: PMC6142074.
Article
29. Amiri A, Chovanec M, Oliva V, Sedliak M, Mego M, Ukropec J, Ukropcová B. 2021; Chemotherapy-induced toxicity in patients with testicular germ cell tumors: the impact of physical fitness and regular exercise. Andrology. 9:1879–1892. DOI: 10.1111/andr.13078. PMID: 34245663.
Article
30. Den H, Dong X, Chen M, Zou Z. 2020; Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment - a meta-analysis of randomized controlled trials. Aging (Albany NY). 12:4010–4039. DOI: 10.18632/aging.102810. PMID: 32062613. PMCID: PMC7066922.
Article
31. Kölliker-Frers R, Udovin L, Otero-Losada M, Kobiec T, Herrera MI, Palacios J, Razzitte G, Capani F. 2021; Neuroinflammation: an integrating overview of reactive-neuroimmune cell interactions in health and disease. Mediators Inflamm. 2021:9999146. DOI: 10.1155/2021/9999146. PMID: 34158806. PMCID: PMC8187052.
Article
32. Lv H, Wang S, Tian M, Wang L, Gao J, Zhao Q, Li Z, Jia X, Yu Y. 2022; Exercise preconditioning ameliorates cognitive impairment in mice with ischemic stroke by alleviating inflammation and modulating gut microbiota. Mediators Inflamm. 2022:2124230. DOI: 10.1155/2022/2124230. PMID: 36262547. PMCID: PMC9576414.
Article
33. Kwon HS, Koh SH. 2020; Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 9:42. DOI: 10.1186/s40035-020-00221-2. PMID: 33239064. PMCID: PMC7689983.
Article
34. Mann CN, Devi SS, Kersting CT, Bleem AV, Karch CM, Holtzman DM, Gallardo G. 2022; Astrocytic α2-Na+/K+ ATPase inhibition suppresses astrocyte reactivity and reduces neurodegeneration in a tauopathy mouse model. Sci Transl Med. 14:eabm4107. DOI: 10.1126/scitranslmed.abm4107. PMID: 35171651. PMCID: PMC9161722.
Article
35. de Senna PN, Xavier LL, Bagatini PB, Saur L, Galland F, Zanotto C, Bernardi C, Nardin P, Gonçalves CA, Achaval M. 2015; Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res. 1618:75–82. DOI: 10.1016/j.brainres.2015.05.026. PMID: 26032744.
Article
36. Chupel MU, Minuzzi LG, Furtado G, Santos ML, Hogervorst E, Filaire E, Teixeira AM. 2018; Exercise and taurine in inflammation, cognition, and peripheral markers of blood-brain barrier integrity in older women. Appl Physiol Nutr Metab. 43:733–741. DOI: 10.1139/apnm-2017-0775. PMID: 29474803.
Article
37. Medhat E, Rashed L, Abdelgwad M, Aboulhoda BE, Khalifa MM, El-Din SS. 2020; Exercise enhances the effectiveness of vitamin D therapy in rats with Alzheimer's disease: emphasis on oxidative stress and inflammation. Metab Brain Dis. 35:111–120. DOI: 10.1007/s11011-019-00504-2. PMID: 31691146.
Article
38. Wang YY, Zhou YN, Jiang L, Wang S, Zhu L, Zhang SS, Yang H, He Q, Liu L, Xie YH, Liang X, Tang J, Chao FL, Tang Y. 2023; Long-term voluntary exercise inhibited AGE/RAGE and microglial activation and reduced the loss of dendritic spines in the hippocampi of APP/PS1 transgenic mice. Exp Neurol. 363:114371. DOI: 10.1016/j.expneurol.2023.114371. PMID: 36871860.
Article
39. Magee JC, Grienberger C. 2020; Synaptic plasticity forms and functions. Annu Rev Neurosci. 43:95–117. DOI: 10.1146/annurev-neuro-090919-022842. PMID: 32075520.
Article
40. Lu C, Gao R, Zhang Y, Jiang N, Chen Y, Sun J, Wang Q, Fan B, Liu X, Wang F. 2021; S-equol, a metabolite of dietary soy isoflavones, alleviates lipopolysaccharide-induced depressive-like behavior in mice by inhibiting neuroinflammation and enhancing synaptic plasticity. Food Funct. 12:5770–5778. DOI: 10.1039/D1FO00547B. PMID: 34038497.
Article
41. Lin L, Yang SS, Chu J, Wang L, Ning LN, Zhang T, Jiang Q, Tian Q, Wang JZ. 2014; Region-specific expression of tau, amyloid-β protein precursor, and synaptic proteins at physiological condition or under endoplasmic reticulum stress in rats. J Alzheimers Dis. 41:1149–1163. DOI: 10.3233/JAD-140207. PMID: 24787918.
Article
42. Mirza FJ, Zahid S. 2018; The role of synapsins in neurological disorders. Neurosci Bull. 34:349–358. DOI: 10.1007/s12264-017-0201-7. PMID: 29282612. PMCID: PMC5856722.
Article
43. Tassan Mazzocco M, Guarnieri FC, Monzani E, Benfenati F, Valtorta F, Comai S. 2021; Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Prog Neuropsychopharmacol Biol Psychiatry. 105:110135. DOI: 10.1016/j.pnpbp.2020.110135. PMID: 33058959.
Article
44. Li SM, Li B, Zhang L, Zhang GF, Sun J, Ji MH, Yang JJ. 2020; A complement-microglial axis driving inhibitory synapse related protein loss might contribute to systemic inflammation-induced cognitive impairment. Int Immunopharmacol. 87:106814. DOI: 10.1016/j.intimp.2020.106814. PMID: 32707491.
Article
45. Bilchak JN, Caron G, Côté MP. 2021; Exercise-induced plasticity in signaling pathways involved in motor recovery after spinal cord injury. Int J Mol Sci. 22:4858. DOI: 10.3390/ijms22094858. PMID: 34064332. PMCID: PMC8124911.
Article
46. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. 2011; The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 11:607–615. DOI: 10.1038/nri3041. PMID: 21818123.
Article
47. He XF, Liu DX, Zhang Q, Liang FY, Dai GY, Zeng JS, Pei Z, Xu GQ, Lan Y. 2017; Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci. 10:144. DOI: 10.3389/fnmol.2017.00144. PMID: 28579942. PMCID: PMC5437122.
Article
48. Rizzo FR, Guadalupi L, Sanna K, Vanni V, Fresegna D, De Vito F, Musella A, Caioli S, Balletta S, Bullitta S, Bruno A, Dolcetti E, Stampanoni Bassi M, Buttari F, Gilio L, Mandolesi G, Centonze D, Gentile A. 2021; Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain Behav Immun. 98:13–27. DOI: 10.1016/j.bbi.2021.08.212. PMID: 34391817.
Article
49. Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, Gonçalves RA, Clarke JR, Beckman D, Staniszewski A, Berman H, Guerra LA, Forny-Germano L, Meier S, Wilcock DM, de Souza JM, Alves-Leon S, Prado VF, Prado MAM, Abisambra JF, et al. 2019; Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nat Med. 25:165–175. DOI: 10.1038/s41591-018-0275-4. PMID: 30617325. PMCID: PMC6327967.
Article
50. Zare Z, Zarbakhsh S, Tehrani M, Mohammadi M. 2022; Neuroprotective effects of treadmill exercise in hippocampus of ovariectomized and diabetic rats. Neuroscience. 496:64–72. DOI: 10.1016/j.neuroscience.2022.06.012. PMID: 35700817.
Article
51. Navazani P, Vaseghi S, Hashemi M, Shafaati MR, Nasehi M. 2021; Effects of treadmill exercise on the expression level of BAX, BAD, BCL-2, BCL-XL, TFAM, and PGC-1α in the hippocampus of thimerosal-treated rats. Neurotox Res. 39:1274–1284. DOI: 10.1007/s12640-021-00370-w. PMID: 33939098.
Article
52. Vanzella C, Neves JD, Vizuete AF, Aristimunha D, Kolling J, Longoni A, Gonçalves CAS, Wyse ATS, Netto CA. 2017; Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats. Behav Brain Res. 334:78–85. DOI: 10.1016/j.bbr.2017.07.034. PMID: 28756215.
Article
53. Rasoolijazi H, Norouzi Ofogh S, Ababzadeh S, Mehdizadeh M, Shabkhiz F. 2021; Comparing the effects of rosemary extract and treadmill exercise on the hippocampal function and antioxidant capacity in old rats. Basic Clin Neurosci. 12:361–372. DOI: 10.32598/bcn.12.3.2139.1. PMID: 34917295. PMCID: PMC8666924.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr