Korean J Gastroenterol.  2021 Jul;78(1):3-8. 10.4166/kjg.2021.408.

Early Life Events and Development of Gut Microbiota in Infancy

Affiliations
  • 1Division of Gastroenterology and Nutrition of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea

Abstract

With its dynamic composition and function, the gut microbiome plays a key role in human development and long-term health. The first 2 years of life are crucial to the early establishment of the gut microbiome. During early life, the gut microbial composition rapidly changes and multiple factors influence the initial colonization, development, and function of the neonatal gut microbiome. In addition, alterations in early-life gut microbial composition linked to necrotizing enterocolitis in infancy, as well as some chronic diseases in later, including obesity, inflammatory bowel disease, cancer, allergies, asthma, and neurological diseases associated with the gut-brain axis. In this review, we focus on both maternal and infant factors known to influence early-life gut colonization.

Keyword

Gut microbiome; Chronic diseases; Maternal factors; Infant factors

Reference

1. Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. 2014; The intestinal microbiome in early life: health and disease. Front Immunol. 5:427. DOI: 10.3389/fimmu.2014.00427. PMID: 25250028. PMCID: PMC4155789.
Article
2. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012; Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 3:289–306. DOI: 10.4161/gmic.19897. PMID: 22572875. PMCID: PMC3463488.
Article
3. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. 2013; Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 24:160–168. DOI: 10.1016/j.copbio.2012.08.005. PMID: 22940212.
Article
4. Blanton LV, Charbonneau MR, Salih T, et al. 2016; Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 351:aad3311. DOI: 10.1126/science.aad3311. PMID: 26912898. PMCID: PMC4787260.
Article
5. Charbonneau MR, O'Donnell D, Blanton LV, et al. 2016; Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 164:859–871. DOI: 10.1016/j.cell.2016.01.024. PMID: 26898329. PMCID: PMC4793393.
Article
6. Davis JC, Lewis ZT, Krishnan S, et al. 2017; Growth and morbidity of gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Sci Rep. 7:40466. DOI: 10.1038/srep40466. PMID: 28079170. PMCID: PMC5227965.
Article
7. Round JL, Mazmanian SK. 2009; The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 9:313–323. DOI: 10.1038/nri2515. PMID: 19343057. PMCID: PMC4095778.
Article
8. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. 2016; How colonization by microbiota in early life shapes the immune system. Science. 352:539–544. DOI: 10.1126/science.aad9378. PMID: 27126036. PMCID: PMC5050524.
Article
9. Ganal-Vonarburg SC, Duerr CU. 2020; The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life. Immunology. 159:39–51. DOI: 10.1111/imm.13138. PMID: 31777064. PMCID: PMC6904614.
Article
10. Ferretti P, Pasolli E, Tett A, et al. 2018; Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 24:133–145.e5.
Article
11. Bäckhed F, Roswall J, Peng Y, et al. 2015; Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 17:690–703. DOI: 10.1016/j.chom.2015.04.004. PMID: 25974306.
Article
12. O'Neill IJ, Sanchez Gallardo R, Saldova R, et al. 2020; Maternal and infant factors that shape neonatal gut colonization by bacteria. Expert Rev Gastroenterol Hepatol. 14:651–664. DOI: 10.1080/17474124.2020.1784725. PMID: 32552141.
13. Young VB. 2012; The intestinal microbiota in health and disease. Curr Opin Gastroenterol. 28:63–69. DOI: 10.1097/MOG.0b013e32834d61e9. PMID: 22080827. PMCID: PMC3707308.
Article
14. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. 2019; Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 16:53. DOI: 10.1186/s12974-019-1434-3. PMID: 30823925. PMCID: PMC6397457.
Article
15. Lauder AP, Roche AM, Sherrill-Mix S, et al. 2016; Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 4:29. DOI: 10.1186/s40168-016-0172-3. PMID: 27338728. PMCID: PMC4917942.
Article
16. de Goffau MC, Lager S, Sovio U, et al. 2019; Human placenta has no microbiome but can contain potential pathogens. Nature. 572:329–334. DOI: 10.1038/s41586-019-1451-5. PMID: 31367035. PMCID: PMC6697540.
Article
17. Jiménez E, Marín ML, Martín R, et al. 2008; Is meconium from healthy newborns actually sterile? Res Microbiol. 159:187–193. DOI: 10.1016/j.resmic.2007.12.007. PMID: 18281199.
Article
18. DiGiulio DB, Romero R, Kusanovic JP, et al. 2010; Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. 64:38–57. DOI: 10.1111/j.1600-0897.2010.00830.x. PMID: 20331587. PMCID: PMC2907911.
Article
19. Kozyrskyj AL, Kalu R, Koleva PT, Bridgman SL. 2016; Fetal programming of overweight through the microbiome: boys are disproportionately affected. J Dev Orig Health Dis. 7:25–34. DOI: 10.1017/S2040174415001269. PMID: 26118444.
Article
20. Kumari M, Kozyrskyj AL. 2017; Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obes Rev. 18:18–31. DOI: 10.1111/obr.12484. PMID: 27862824.
Article
21. Tun HM, Bridgman SL, Chari R, et al. 2018; Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 172:368–377. DOI: 10.1001/jamapediatrics.2017.5535. PMID: 29459942. PMCID: PMC5875322.
Article
22. Collado MC, Isolauri E, Laitinen K, Salminen S. 2008; Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 88:894–899. DOI: 10.1093/ajcn/88.4.894. PMID: 18842773.
Article
23. Santacruz A, Collado MC, García-Valdés L, et al. 2010; Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 104:83–92. DOI: 10.1017/S0007114510000176. PMID: 20205964.
Article
24. Baumann-Dudenhoeffer AM, D'Souza AW, Tarr PI, Warner BB, Dantas G. 2018; Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med. 24:1822–1829. DOI: 10.1038/s41591-018-0216-2. PMID: 30374198. PMCID: PMC6294307.
Article
25. Soderborg TK, Clark SE, Mulligan CE, et al. 2018; The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nat Commun. 9:4462. DOI: 10.1038/s41467-018-06929-0. PMID: 30367045. PMCID: PMC6203757.
Article
26. Christopher MM, Jacob EF. 2017; Maternal modifiers of the infant gutmicrobiota: metabolic consequences. Journal of Endocrinology. 235:R1–R12. DOI: 10.1530/JOE-17-0303. PMID: 28751453. PMCID: PMC5568816.
27. Fields DA, George B, Williams M, et al. 2017; Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr Obes. 12 Suppl 1:78–85. DOI: 10.1111/ijpo.12182. PMID: 28160457. PMCID: PMC5540830.
28. Whitaker KM, Marino RC, Haapala JL, et al. 2017; Associations of maternal weight status before, during, and after pregnancy with inflammatory markers in breast milk. Obesity (Silver Spring). 25:2092–2099. DOI: 10.1002/oby.22025. PMID: 28985033. PMCID: PMC5705414.
Article
29. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. 2012; The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 96:544–551. DOI: 10.3945/ajcn.112.037382. PMID: 22836031.
Article
30. Chu DM, Antony KM, Ma J, et al. 2016; The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8:77. DOI: 10.1186/s13073-016-0330-z. PMID: 27503374. PMCID: PMC4977686.
Article
31. Ma J, Prince AL, Bader D, et al. 2014; High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun. 5:3889. DOI: 10.1038/ncomms4889. PMID: 24846660. PMCID: PMC4078997.
Article
32. Martinez-Medina M, Denizot J, Dreux N, et al. 2014; Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 63:116–124. DOI: 10.1136/gutjnl-2012-304119. PMID: 23598352.
33. Spreadbury I. 2012; Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity. Diabetes Metab Syndr Obes. 5:175–189. DOI: 10.2147/DMSO.S33473. PMID: 22826636. PMCID: PMC3402009.
Article
34. Dominguez-Bello MG, Costello EK, Contreras M, et al. 2010; Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 107:11971–11975. DOI: 10.1073/pnas.1002601107. PMID: 20566857. PMCID: PMC2900693.
Article
35. Sandall J, Tribe RM, Avery L, et al. 2018; Short-term and long-term effects of caesarean section on the health of women and children. Lancet. 392:1349–1357. DOI: 10.1016/S0140-6736(18)31930-5.
Article
36. Bäckhed F, Roswall J, Peng Y, et al. 2015; Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 17:852. DOI: 10.1016/j.chom.2015.05.012. PMID: 26308884.
Article
37. MacIntyre DA, Chandiramani M, Lee YS, et al. 2015; The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 5:8988. DOI: 10.1038/srep08988. PMID: 25758319. PMCID: PMC4355684.
Article
38. Bokulich NA, Chung J, Battaglia T, et al. 2016; Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 8:343ra82. DOI: 10.1126/scitranslmed.aad7121. PMID: 27306664. PMCID: PMC5308924.
Article
39. Penders J, Gerhold K, Thijs C, et al. 2014; New insights into the hygiene hypothesis in allergic diseases: mediation of sibling and birth mode effects by the gut microbiota. Gut Microbes. 5:239–244. DOI: 10.4161/gmic.27905. PMID: 24637604. PMCID: PMC4063851.
40. Francino MP. 2018; Birth mode-related differences in gut microbiota colonization and immune system development. Ann Nutr Metab. 73 Suppl 3:12–16. DOI: 10.1159/000490842. PMID: 30041189.
Article
41. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. 2017; Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 23:314–326. DOI: 10.1038/nm.4272. PMID: 28112736. PMCID: PMC5345907.
Article
42. Kumar H, du Toit E, Kulkarni A, et al. 2016; Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front Microbiol. 7:1619. DOI: 10.3389/fmicb.2016.01619. PMID: 27790209. PMCID: PMC5061857.
Article
43. Pannaraj PS, Li F, Cerini C, et al. 2017; Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171:647–654. DOI: 10.1001/jamapediatrics.2017.0378. PMID: 28492938. PMCID: PMC5710346.
Article
44. Asnicar F, Manara S, Zolfo M, et al. 2017; Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2:e00164–16. DOI: 10.1128/mSystems.00164-16. PMID: 28144631. PMCID: PMC5264247.
Article
45. Duranti S, Lugli GA, Mancabelli L, et al. 2017; Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 5:66. DOI: 10.1186/s40168-017-0282-6. PMID: 28651630. PMCID: PMC5485682.
Article
46. Murphy K, Curley D, O'Callaghan TF, et al. 2017; The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep. 7:40597. DOI: 10.1038/srep40597. PMID: 28094284. PMCID: PMC5240090.
Article
47. Fernández L, Langa S, Martín V, et al. 2013; The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 69:1–10. DOI: 10.1016/j.phrs.2012.09.001. PMID: 22974824.
Article
48. Jost T, Lacroix C, Braegger C, Chassard C. 2015; Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev. 73:426–437. DOI: 10.1093/nutrit/nuu016. PMID: 26081453.
Article
49. Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA. 2017; Systematic review of the human milk microbiota. Nutr Clin Pract. 32:354–364. DOI: 10.1177/0884533616670150. PMID: 27679525.
Article
50. Eidelman AI, Schanler RJ. 2012; Breastfeeding and the use of human milk. Pediatrics. 129:e827–e841. DOI: 10.1542/peds.2011-3552. PMID: 22371471.
Article
51. Heikkilä MP, Saris PE. 2003; Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 95:471–478. DOI: 10.1046/j.1365-2672.2003.02002.x. PMID: 12911694.
Article
52. Kapourchali FR, Cresci GAM. 2020; Early-life gut microbiome-the importance of maternal and infant factors in its establishment. Nutr Clin Pract. 35:386–405. DOI: 10.1002/ncp.10490. PMID: 32329544.
Article
53. Shu M, Wang Y, Yu J, et al. 2013; Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 8:e55380. DOI: 10.1371/journal.pone.0055380. PMID: 23405142. PMCID: PMC3566139.
Article
54. Stsepetova J, Sepp E, Julge K, Vaughan E, Mikelsaar M, de Vos WM. 2007; Molecularly assessed shifts of Bifidobacterium ssp. and less diverse microbial communities are characteristic of 5-year-old allergic children. FEMS Immunol Med Microbiol. 51:260–269. DOI: 10.1111/j.1574-695X.2007.00306.x. PMID: 17868362.
55. Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. 2001; Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 107:129–134. DOI: 10.1067/mai.2001.111237. PMID: 11150002.
Article
56. Suzuki S, Shimojo N, Tajiri Y, Kumemura M, Kohno Y. 2007; Differences in the composition of intestinal Bifidobacterium species and the development of allergic diseases in infants in rural Japan. Clin Exp Allergy. 37:506–511. DOI: 10.1111/j.1365-2222.2007.02676.x. PMID: 17430346.
Article
57. Toscano M, De Grandi R, Peroni DG, et al. 2017; Impact of delivery mode on the colostrum microbiota composition. BMC Microbiol. 17:205. DOI: 10.1186/s12866-017-1109-0. PMID: 28946864. PMCID: PMC5613475.
Article
58. Fujita M, Roth E, Lo YJ, Hurst C, Vollner J, Kendell A. 2012; In poor families, mothers' milk is richer for daughters than sons: a test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am J Phys Anthropol. 149:52–59. DOI: 10.1002/ajpa.22092. PMID: 22623326.
Article
59. Michaelsen KF, Skafte L, Badsberg JH, Jørgensen M. 1990; Variation in macronutrients in human bank milk: influencing factors and implications for human milk banking. J Pediatr Gastroenterol Nutr. 11:229–239. DOI: 10.1097/00005176-199008000-00013. PMID: 2395063.
60. Moossavi S, Sepehri S, Robertson B, et al. 2019; Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 25:324–335.e4. DOI: 10.1016/j.chom.2019.01.011. PMID: 30763539.
Article
61. Gohir W, Ratcliffe EM, Sloboda DM. 2015; Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatr Res. 77:196–204. DOI: 10.1038/pr.2014.169. PMID: 25314580.
Article
62. Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E, Rautava S. 2019; Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr. 6:4. DOI: 10.3389/fnut.2019.00004. PMID: 30778389. PMCID: PMC6369203.
Article
63. Vandenplas Y, Berger B, Carnielli VP, et al. 2018; Human milk oligosaccharides: 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients. 10:1161. DOI: 10.3390/nu10091161. PMID: 30149573. PMCID: PMC6164445.
Article
64. Urashima T, Taufik E, Fukuda K, Asakuma S. 2013; Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci Biotechnol Biochem. 77:455–466. DOI: 10.1271/bbb.120810. PMID: 23470761.
Article
65. Zeissig S, Blumberg RS. 2014; Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol. 15:307–310. DOI: 10.1038/ni.2847. PMID: 24646587.
Article
66. Francino MP. 2016; Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 6:1543. DOI: 10.3389/fmicb.2015.01543. PMID: 26793178. PMCID: PMC4709861.
Article
67. Miller SA, Wu RKS, Oremus M. 2018; The association between antibiotic use in infancy and childhood overweight or obesity: a systematic review and meta-analysis. Obes Rev. 19:1463–1475. DOI: 10.1111/obr.12717. PMID: 30035851.
Article
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr