Korean J Orthod.  2023 May;53(3):205-216. 10.4041/kjod22.209.

Micro-computed tomography evaluation of the effects of orthodontic force on immature maxillary first molars and alveolar bone mineral density of Sprague–Dawley rats

Affiliations
  • 1Department of Orthodontic, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China

Abstract


Objective
To investigate changes in the immature teeth of Sprague–Dawley rats during orthodontic treatment and to explore the changes in the peri-radicular alveolar bone through micro-computed tomography (CT).
Methods
Twenty-five 26-day-old male Sprague–Dawley rats were included. The maxillary left first molar was moved mesially under a continuous force of 30 cN, and the right first molar served as the control. After orthodontic treatment for 7, 14, 21, 28, and 42 days, the root length, tooth volume, and alveolar bone mineral density (BMD) around the mesial root were measured through micro-CT.
Results
The immature teeth continued to elongate after application of orthodontic force. The root length on the force side was significantly smaller than that on the control side, whereas the differences in the volume change between both sides were not statistically significant. Alveolar bone in the coronal part of the compression and tension sides showed no difference in BMD between the experimental and control groups. The BMD of the experimental group decreased from day 14 to day 42 in the apical part of the compression side and increased from day 7 to day 42 in the apical part of the tension side. The BMD of the experimental group decreased in the root apex part on day 7.
Conclusions
The root length and volume of immature teeth showed continued development under orthodontic forces. Alveolar bone resorption was observed on the compression side, and bone formation was observed on the tension side.

Keyword

Root development; Alveolar bone; Tooth movement

Figure

  • Figure 1 A, Rat model of orthodontic tooth movement; B, sagittal view. The yellow line represents the horizontal plane passing through the mesial and distal cemento-enamel junction of the maxillary second molar; C, horizontal view. The red line represents the sagittal plane passing through the center of the mesial root of the maxillary first molar and the mesiobuccal root of the maxillary second molar; the green dotted line indicates the division between the upper first and second molars, and the upper second and third molars. D, Measurement of movement at the crown (a), neck (b), apical foramen (c), and inclination of the root (d). m1, represents the maxillary first molar; m2, represents the maxillary second molar; m3, represents the maxillary third molar.

  • Figure 2 The mesial root length of the maxillary first molar. A–E, Micro-computed tomography (CT) reconstruction of the maxillary first molars in the control group at 7, 14, 21, 28, and 42 days after applying orthodontic force. F–J, Micro-CT reconstruction of the maxillary first molars of the orthodontic force group at 7, 14, 21, 28, and 42 days after applying orthodontic force. The blue and green arrows represent the cemento-enamel junction and mesial root length, respectively. H–J, The root apex shape was altered at 21, 28, and 42 days after application of orthodontic force.

  • Figure 3 Selection of regions of interest (ROI). 210 × 210 × 210-µm cubes, 200 µm mesial and distal to the mesial root. In the apical region, the ROI was defined as a 210 × 210 × 100-µm cube below the apical foramen. A, Sagittal view; B, horizontal view; C, coronal view. Coronal part of the compression side (M1), coronal part of the tension side (D1), apical part of the compression side (M2), apical part of the tension side (D2), and root apex part (A).

  • Figure 4 Graphical representation of the root length (mm), tooth volume (mm3), and tooth movement at different time points. A, Root length; B, tooth volume; C, crown distance; D, neck distance; E, apical foramen distance; F, root inclination. *p < 0.05.

  • Figure 5 Changes in the bone mineral density (BMD) of the alveolar bone at different time points. A, Coronal part of the compression side (M1). B, Apical part of the compression side (M2). C, Coronal part of the tension side (D1). D, Apical part of the tension side (D2). E, Root apex part (A). Box edges represent the upper and lower quantiles, the middle lines in the boxes represent the medians, and the whiskers represent the maxima and minima. *p < 0.05.


Reference

1. Brierley CA, DiBiase A, Sandler PJ. 2017; Early Class II treatment. Aust Dent J. 62 Suppl 1:4–10. https://doi.org/10.1111/adj.12478. DOI: 10.1111/adj.12478. PMID: 28297093.
Article
2. Ngan P, Moon W. 2015; Evolution of Class III treatment in orthodontics. Am J Orthod Dentofacial Orthop. 148:22–36. https://doi.org/10.1016/j.ajodo.2015.04.012. DOI: 10.1016/j.ajodo.2015.04.012. PMID: 26124025.
Article
3. Fleming PS. 2017; Timing orthodontic treatment: early or late? Aust Dent J. 62 Suppl 1:11–9. https://doi.org/10.1111/adj.12474. DOI: 10.1111/adj.12474. PMID: 28297091.
Article
4. Dalaie K, Badiee M, Behnaz M, Kavousinejad S. 2021; Effect of orthodontic forces on root length of immature mandibular second premolars: a split-mouth randomized clinical trial. Dental Press J Orthod. 26:e2119355. https://doi.org/10.1590/2177-6709.26.5.e2119355.oar. DOI: 10.1590/2177-6709.26.5.e2119355.oar. PMID: 35640080. PMCID: PMC8576854. PMID: 24c4b858170847b2abd2a5940cbcd279.
Article
5. Bauss O, Sadat-Khonsari R, Engelke W, Kahl-Nieke B. 2003; Results of transplanting developing third molars as part of orthodontics space management. Part 2: results following the orthodontic treatment of transplanted developing third molars in cases of aplasia and premature loss of teeth with atrophy of the alveolar process. J Orofac Orthop. 64:40–7. https://doi.org/10.1007/s00056-003-0132-y. DOI: 10.1007/s00056-003-0132-y. PMID: 12557106.
Article
6. Harris EF, Baker WC. 1990; Loss of root length and crestal bone height before and during treatment in adolescent and adult orthodontic patients. Am J Orthod Dentofacial Orthop. 98:463–9. https://doi.org/10.1016/s0889-5406(05)81656-7. DOI: 10.1016/S0889-5406(05)81656-7. PMID: 2239846.
Article
7. Hendrix I, Carels C, Kuijpers-Jagtman AM, Van 'T Hof M. 1994; A radiographic study of posterior apical root resorption in orthodontic patients. Am J Orthod Dentofacial Orthop. 105:345–9. DOI: 10.1016/S0889-5406(94)70128-8. PMID: 8154459.
Article
8. Ren Y, Maltha JC, Liem RS, Stokroos I, Kuijpers-Jagtman AM. 2008; Age-dependent external root resorption during tooth movement in rats. Acta Odontol Scand. 66:93–8. https://doi.org/10.1080/00016350801982522. DOI: 10.1080/00016350801982522. PMID: 18446550.
Article
9. Zhao L, Matsumoto Y, Ono T, Iseki S. 2019; Effects of mechanical force application on the developing root apex in rat maxillary molars. Arch Oral Biol. 101:64–76. https://doi.org/10.1016/j.archoralbio.2019.03.010. DOI: 10.1016/j.archoralbio.2019.03.010. PMID: 30903951.
Article
10. An J, Li Y, Liu Z, Wang R, Zhang B. 2017; A micro-CT study of microstructure change of alveolar bone during orthodontic tooth movement under different force magnitudes in rats. Exp Ther Med. 13:1793–8. https://doi.org/10.3892/etm.2017.4186. DOI: 10.3892/etm.2017.4186. PMID: 28565769. PMCID: PMC5443305.
Article
11. Swain MV, Xue J. 2009; State of the art of Micro-CT applications in dental research. Int J Oral Sci. 1:177–88. https://doi.org/10.4248/ijos09031. DOI: 10.4248/IJOS09031. PMID: 20690421. PMCID: PMC3470105.
Article
12. Shintcovsk RL, Knop L, Tanaka OM, Maruo H. 2014; Nicotine effect on bone remodeling during orthodontic tooth movement: histological study in rats. Dental Press J Orthod. 19:96–107. https://doi.org/10.1590/2176-9451.19.2.096-107.oar. DOI: 10.1590/2176-9451.19.2.096-107.oar. PMID: 24945520. PMCID: PMC4296601. PMID: 6c1142eabdb14afa86cec9253264099b.
Article
13. Kong X, Cao M, Ye R, Ding Y. 2010; Orthodontic force accelerates dentine mineralization during tooth development in juvenile rats. Tohoku J Exp Med. 221:265–70. https://doi.org/10.1620/tjem.221.265. DOI: 10.1620/tjem.221.265. PMID: 20625241.
Article
14. Leong NL, Hurng JM, Djomehri SI, Gansky SA, Ryder MI, Ho SP. 2012; Age-related adaptation of bone-PDL-tooth complex: Rattus-Norvegicus as a model system. PLoS One. 7:e35980. https://doi.org/10.1371/journal.pone.0035980. DOI: 10.1371/journal.pone.0035980. PMID: 22558292. PMCID: PMC3340399. PMID: 39413ee9480d4cb6ad409b68b02f9c1f.
Article
15. Li X, Xu J, Yin Y, Liu T, Chang L, He S, et al. 2021; Notch signaling inhibition protects against root resorption in experimental immature tooth movement in rats. Am J Orthod Dentofacial Orthop. 159:426–34.e5. https://doi.org/10.1016/j.ajodo.2020.05.012. DOI: 10.1016/j.ajodo.2020.05.012. PMID: 33568273.
Article
16. Owens PD. 1978; Ultrastructure of Hertwig's epithelial root sheath during early root development in premolar teeth in dogs. Arch Oral Biol. 23:91–104. https://doi.org/10.1016/0003-9969(78)90145-0. DOI: 10.1016/0003-9969(78)90145-0. PMID: 274924.
Article
17. Xu L, Tang L, Jin F, Liu XH, Yu JH, Wu JJ, et al. 2009; The apical region of developing tooth root constitutes a complex and maintains the ability to generate root and periodontium-like tissues. J Periodontal Res. 44:275–82. https://doi.org/10.1111/j.1600-0765.2008.01129.x. DOI: 10.1111/j.1600-0765.2008.01129.x. PMID: 19261077.
Article
18. Nakasone N, Yoshie H. 2011; Occlusion regulates tooth-root elongation during root development in rat molars. Eur J Oral Sci. 119:418–26. https://doi.org/10.1111/j.1600-0722.2011.00856.x. DOI: 10.1111/j.1600-0722.2011.00856.x. PMID: 22112026.
Article
19. Motokawa M, Terao A, Karadeniz EI, Kaku M, Kawata T, Matsuda Y, et al. 2013; Effects of long-term occlusal hypofunction and its recovery on the morphogenesis of molar roots and the periodontium in rats. Angle Orthod. 83:597–604. https://doi.org/10.2319/081812-661.1. DOI: 10.2319/081812-661.1. PMID: 23148606. PMCID: PMC8754027.
Article
20. Cao D, Shao B, Izadikhah I, Xie L, Wu B, Li H, et al. 2021; Root dilaceration in maxillary impacted canines and adjacent teeth: a retrospective analysis of the difference between buccal and palatal impaction. Am J Orthod Dentofacial Orthop. 159:167–74. https://doi.org/10.1016/j.ajodo.2019.12.019. DOI: 10.1016/j.ajodo.2019.12.019. PMID: 33342674.
Article
21. Pavlidis D, Daratsianos N, Jäger A. 2011; Treatment of an impacted dilacerated maxillary central incisor. Am J Orthod Dentofacial Orthop. 139:378–87. https://doi.org/10.1016/j.ajodo.2009.10.040. DOI: 10.1016/j.ajodo.2009.10.040. PMID: 21392694.
Article
22. Walia PS, Rohilla AK, Choudhary S, Kaur R. 2016; Review of dilaceration of maxillary central incisor: a mutidisciplinary challenge. Int J Clin Pediatr Dent. 9:90–8. https://doi.org/10.5005/jp-journals-10005-1341. DOI: 10.5005/jp-journals-10005-1341. PMID: 27274164. PMCID: PMC4890071.
Article
23. Winter BU, Stenvik A, Vandevska-Radunovic V. 2009; Dynamics of orthodontic root resorption and repair in human premolars: a light microscopy study. Eur J Orthod. 31:346–51. https://doi.org/10.1093/ejo/cjp020. DOI: 10.1093/ejo/cjp020. PMID: 19465737.
Article
24. Reitan K. 1974; Initial tissue behavior during apical root resorption. Angle Orthod. 44:68–82. https://doi.org/10.1043/0003-3219(1974)044%3C0068:itbdar%3E2.0.co;2. DOI: 10.1043/0003-3219(1974)044<0068:ITBDAR>2.0.CO;2. PMID: 4520953.
Article
25. Star H, Chandrasekaran D, Miletich I, Tucker AS. 2017; Impact of hypofunctional occlusion on upper and lower molars after cessation of root development in adult mice. Eur J Orthod. 39:243–50. https://doi.org/10.1093/ejo/cjw051. DOI: 10.1093/ejo/cjw051. PMID: 27567636.
Article
26. Wan J, Zhou S, Wang J, Zhang R. 2023; Three-dimensional analysis of root changes after orthodontic treatment for patients at different stages of root development. Am J Orthod Dentofacial Orthop. 163:60–7. https://doi.org/10.1016/j.ajodo.2021.08.025. DOI: 10.1016/j.ajodo.2021.08.025. PMID: 36195543.
Article
27. Mao Y, Wang L, Zhu Y, Liu Y, Dai H, Zhou J, et al. 2018; Tension force-induced bone formation in orthodontic tooth movement via modulation of the GSK-3β/β-catenin signaling pathway. J Mol Histol. 49:75–84. https://doi.org/10.1007/s10735-017-9748-x. DOI: 10.1007/s10735-017-9748-x. PMID: 29224185. PMCID: PMC5750339.
Article
28. Ru N, Liu SS, Zhuang L, Li S, Bai Y. 2013; In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement. Angle Orthod. 83:402–9. https://doi.org/10.2319/031312-219.1. DOI: 10.2319/031312-219.1. PMID: 23030553. PMCID: PMC8763084.
Article
29. Li X, Li M, Lu J, Hu Y, Cui L, Zhang D, et al. 2016; Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone Joint Res. 5:492–9. https://doi.org/10.1302/2046-3758.510.bjr-2016-0004.r2. DOI: 10.1302/2046-3758.510.BJR-2016-0004.R2. PMID: 27769958. PMCID: PMC5108356.
Article
30. Yoshida T, Yamaguchi M, Utsunomiya T, Kato M, Arai Y, Kaneda T, et al. 2009; Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling. Orthod Craniofac Res. 12:289–98. https://doi.org/10.1111/j.1601-6343.2009.01464.x. DOI: 10.1111/j.1601-6343.2009.01464.x. PMID: 19840281.
Article
31. Kobayashi Y, Hashimoto F, Miyamoto H, Kanaoka K, Miyazaki-Kawashita Y, Nakashima T, et al. 2000; Force-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J Bone Miner Res. 15:1924–34. https://doi.org/10.1359/jbmr.2000.15.10.1924. DOI: 10.1359/jbmr.2000.15.10.1924. PMID: 11028444.
Article
32. Qin J, Hua Y. 2016; Effects of hydrogen sulfide on the expression of alkaline phosphatase, osteocalcin and collagen type I in human periodontal ligament cells induced by tension force stimulation. Mol Med Rep. 14:3871–7. https://doi.org/10.3892/mmr.2016.5680. DOI: 10.3892/mmr.2016.5680. PMID: 27573279.
Article
33. Zhang R, Wan J, Wang H. 2019; Mechanical strain triggers differentiation of dental mesenchymal stem cells by activating osteogenesis-specific biomarkers expression. Am J Transl Res. 11:233–44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357315/. PMID: 30787982. PMCID: PMC6357315.
34. Bicǎ C, Brezeanu L, Bicǎ D. 2013; A finite element model of force distribution from tooth movement. Metal Int. 18:12–5. https://www.proquest.com/openview/6e242fcd5829fba2e89912e9b225893d/1?pq-origsite=gscholar&cbl=886383.
35. Misawa Y, Kageyama T, Moriyama K, Kurihara S, Yagasaki H, Deguchi T, et al. 2007; Effect of age on alveolar bone turnover adjacent to maxillary molar roots in male rats: a histomorphometric study. Arch Oral Biol. 52:44–50. https://doi.org/10.1016/j.archoralbio.2006.06.012. DOI: 10.1016/j.archoralbio.2006.06.012. PMID: 17125731.
36. Gonzales C, Hotokezaka H, Yoshimatsu M, Yozgatian JH, Darendeliler MA, Yoshida N. 2008; Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar. Angle Orthod. 78:502–9. https://doi.org/10.2319/052007-240.1. DOI: 10.2319/052007-240.1. PMID: 18416627.
37. Kraiwattanapong K, Samruajbenjakun B. 2019; Tissue response resulting from different force magnitudes combined with corticotomy in rats. Angle Orthod. 89:797–803. https://doi.org/10.2319/090418-645.1. DOI: 10.2319/090418-645.1. PMID: 30896251. PMCID: PMC8111850.
38. Li C, Chung CJ, Hwang CJ, Lee KJ. 2019; Local injection of RANKL facilitates tooth movement and alveolar bone remodelling. Oral Dis. 25:550–60. https://doi.org/10.1111/odi.13013. DOI: 10.1111/odi.13013. PMID: 30536847.
39. Nakano T, Hotokezaka H, Hashimoto M, Sirisoontorn I, Arita K, Kurohama T, et al. 2014; Effects of different types of tooth movement and force magnitudes on the amount of tooth movement and root resorption in rats. Angle Orthod. 84:1079–85. https://doi.org/10.2319/121913-929.1. DOI: 10.2319/121913-929.1. PMID: 24754797. PMCID: PMC8638510.
40. Marcantonio CC, Nogueira AVB, Leguizamón NDP, de Molon RS, Lopes MES, Silva RCL, et al. 2021; Effects of obesity on periodontal tissue remodeling during orthodontic movement. Am J Orthod Dentofacial Orthop. 159:480–90. https://doi.org/10.1016/j.ajodo.2019.12.025. DOI: 10.1016/j.ajodo.2019.12.025. PMID: 33563505.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr