Korean J Physiol Pharmacol.  2023 May;27(3):241-256. 10.4196/kjpp.2023.27.3.241.

MST1R as a potential new target antigen of chimeric antigen receptor T cells to treat solid tumors

Affiliations
  • 1Department of Pharmacology & Clinical Pharmacology Lab, Korea
  • 2Department of Internal Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea,
  • 3Department of Pharmacy, Xiantao Hospital of Traditional Chinese Medicine, Xiantao 433000, China

Abstract

Although chimeric antigen receptor T cell (CAR-T) is a promising immunotherapy in hematological malignancies, there remain many obstacles to CART cell therapy for solid tumors. Identifying appropriate tumor-associated antigens (TAAs) is especially critical for success. Using a bioinformatics approach, we identified common potential TAAs for CAR-T cell immunotherapy in solid tumors. We used the GEO database as a training dataset to find differentially expressed genes (DEGs) and verified candidates using the TCGA database, obtaining seven common DEGs (HM13, SDC1, MST1R, HMMR, MIF, CD24, and PDIA4). Then, we used MERAV to analyze the expression of six genes in normal tissues to determine the ideal target genes. Finally, we analyzed tumor microenvironment factors. The results of major microenvironment factor analyses showed that MDSCs, CXCL1, CXCL12, CXCL5, CCL2, CCL5, TGF-β, CTLA-4, and IFN-γ were significantly overexpressed in breast cancer. The expression of MST1R was positively correlated with TGF-β, CTLA-4, and IFN-γ. In lung adenocarcinoma, MDSCs, Tregs, CXCL12, CXCL5, CCL2, PD-L1, CTLA-4, and IFN-γ were significantly overexpressed in tumor tissues. The expression of MST1R was positively correlated with TGF-β, CTLA-4, and IFN-γ. In bladder cancer, CXCL12, CCL2, and CXCL5 were significantly overexpressed in tumor tissues. MST1R expression was positively correlated with TGF-β. Our results demonstrate that MST1R has the potential as a new target antigen for treating breast cancer, lung adenocarcinoma, and bladder cancer and may be used as a progression indicator for bladder cancer.

Keyword

Adenocarcinoma of lung; Breast neoplasms; Chimeric antigen receptor T cell; RON protein; Urinary bladder neoplasms

Figure

  • Fig. 1 Identification of expression differences between tumor and normal tissue. (A-C) Volcano plot of the differential mRNA expression analysis. X-axis: log2 fold change; Y-axis: –log10 (FDR p-value) for each probes; Vertical dotted lines: fold change > 1 or < –1; Horizontal dotted line: the significant cutoff (FDR p-value = 0.05). (A) There were 2,974 genes identified to be differentially expressed in GSE21422, including 1,344 up-regulated and 1,630 down-regulated genes. (B) 2,571 genes (1,195 up-regulated and 1,376 down-regulated genes) differentially expressed in GSE65635. (C) 3,442 genes (1,594 up-regulated and 1,848 down-regulated genes) differentially expressed in GSE140797. (D) A total of 125 genes were significantly differentially expressed in the three GEO datasets. (E, F) GO and KEGG pathway analysis of significant differetially expressed genes. (E) The top ten significantly enriched GO categories were calculated. Blue: Biological process; Orange: Cellular component; Green: Molecular function. (F) The cellular component was calculated. (G) Gene networks identified through KEGG analysis of the differentially expressed genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

  • Fig. 2 Differential expression of common DEGs genes. (A) Differential expression of common DEGs genes in TCGA and GEO datasets. (B) Differential expression of common DEGs genes in TCGA according to clinical stage. (C) Survival analysis of MST1R in BRCA, LUAD, and BLCA datasets. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. DEGs, differentially expressed genes; ns, no significance.

  • Fig. 3 Correlation between immune infiltration and MST1R expression. A–C included (a) Heatmap of major immune cells, (b) boxplot of differential expression of 28 immune cells. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. ns, no significance.

  • Fig. 4 Correlation between chemokines and MST1R expression. A–C included (a) Differential expression of the 38 chemokines in normal and tumor tissues, (b) The univariate Cox regression analysis of differentially expressed chemokines. (c) Hierarchical clustering analysis was performed using Pearson’s correlation coefficient. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. ns, no significance.

  • Fig. 5 Correlation between immune checkpoint genes and MST1R expression. A–C included differential expression of the 10 immune checkpoint genes in normal and tumor tissues. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. ns, no significance.


Reference

1. Abramson JS. 2020; Anti-CD19 CAR T-cell therapy for B-cell Non-Hodgkin lymphoma. Transfus Med Rev. 34:29–33. DOI: 10.1016/j.tmrv.2019.08.003. PMID: 31677848.
Article
2. Feng D, Sun J. 2020; Overview of anti-BCMA CAR-T immunotherapy for multiple myeloma and relapsed/refractory multiple myeloma. Scand J Immunol. 92:e12910. DOI: 10.1111/sji.12910. PMID: 32471019.
Article
3. Martinez M, Moon EK. 2019; CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 10:128. DOI: 10.3389/fimmu.2019.00128. PMID: 30804938. PMCID: PMC6370640. PMID: f5712054a948492ab67acd299364e1e2.
Article
4. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. 2013; Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 31:71–75. DOI: 10.1038/nbt.2459. PMID: 23242161. PMCID: PMC5505184.
Article
5. Xie Y, Hu Y, Zhou N, Yao C, Wu L, Liu L, Chen F. 2020; CAR T-cell therapy for triple-negative breast cancer: where we are. Cancer Lett. 491:121–131. DOI: 10.1016/j.canlet.2020.07.044. PMID: 32795486.
Article
6. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015; limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e47. DOI: 10.1093/nar/gkv007. PMID: 25605792. PMCID: PMC4402510.
Article
7. Huang da W, Sherman BT, Lempicki RA. 2009; Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. DOI: 10.1093/nar/gkn923. PMID: 19033363. PMCID: PMC2615629.
Article
8. Liu R, Guo CX, Zhou HH. 2015; Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen. Cancer Biol Ther. 16:317–324. DOI: 10.1080/15384047.2014.1002360. PMID: 25756514. PMCID: PMC4622923.
Article
9. Shaul YD, Yuan B, Thiru P, Nutter-Upham A, McCallum S, Lanzkron C, Bell GW, Sabatini DM. 2016; MERAV: a tool for comparing gene expression across human tissues and cell types. Nucleic Acids Res. 44:D560–D566. DOI: 10.1093/nar/gkv1337. PMID: 26626150. PMCID: PMC4702927.
Article
10. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman WH, Becker C, Pagès F, Speicher MR, Trajanoski Z, Galon J. 2013; Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 39:782–795. DOI: 10.1016/j.immuni.2013.10.003. PMID: 24138885.
Article
11. Sadelain M, Rivière I, Brentjens R. 2003; Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 3:35–45. DOI: 10.1038/nrc971. PMID: 12509765.
Article
12. Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE. 2010; Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther. 10:77–90. DOI: 10.2174/156652310791111001. PMID: 20222863.
Article
13. Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL, Marincola FM, Wang E, Young HA, Murphy PM, Hwu P. 2002; Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther. 13:1971–1980. DOI: 10.1089/10430340260355374. PMID: 12427307.
Article
14. Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S, Fang Z, Zhao K, Konaparthi R, Hua S, Zhang J, Li-Ning-Tapia EM, Kapoor A, Wu CJ, Patel NB, Guo Z, Ramamoorthy V, Tieu TN, Heffernan T, Zhao D, et al. 2016; Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 6:80–95. DOI: 10.1158/2159-8290.CD-15-0224. PMID: 26701088. PMCID: PMC4707102.
Article
15. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, Teichmann SA, Janowitz T, Jodrell DI, Tuveson DA, Fearon DT. 2013; Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 110:20212–20217. DOI: 10.1073/pnas.1320318110. PMID: 24277834. PMCID: PMC3864274.
Article
16. Marcuzzi E, Angioni R, Molon B, Calì B. 2018; Chemokines and chemokine receptors: orchestrating tumor metastasization. Int J Mol Sci. 20:96. Erratum in: Int J Mol Sci. 2019;20:2651. DOI: 10.3390/ijms20112651. PMID: 31146450. PMCID: PMC6600455. PMID: e9b3502e63bb4b05b7360016de493d61.
Article
17. Xia AL, Wang XC, Lu YJ, Lu XJ, Sun B. 2017; Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget. 8:90521–90531. DOI: 10.18632/oncotarget.19361. PMID: 29163850. PMCID: PMC5685771.
Article
18. Sterner RC, Sterner RM. 2021; CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11:69. DOI: 10.1038/s41408-021-00459-7. PMID: 33824268. PMCID: PMC8024391. PMID: 40c1ba0f2ef74dd8953be161f136eb35.
Article
19. Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z, Qian Q. 2019; Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 15:2548–2560. DOI: 10.7150/ijbs.34213. PMID: 31754328. PMCID: PMC6854376.
Article
20. Alizadeh D, Wong RA, Gholamin S, Maker M, Aftabizadeh M, Yang X, Pecoraro JR, Jeppson JD, Wang D, Aguilar B, Starr R, Larmonier CB, Larmonier N, Chen MH, Wu X, Ribas A, Badie B, Forman SJ, Brown CE. 2021; IFNγ is critical for CAR T cell-mediated myeloid activation and induction of endogenous immunity. Cancer Discov. 11:2248–2265. DOI: 10.1158/2159-8290.CD-20-1661. PMID: 33837065. PMCID: PMC8561746.
Article
21. Li AM, Hucks GE, Dinofia AM, Seif AE, Teachey DT, Baniewicz D, Callahan C, Fasano C, McBride B, Gonzalez V, Nazimuddin F, Porter DL, Lacey SF, June CH, Grupp SA, Maude SL. 2018; Checkpoint inhibitors augment CD19-directed chimeric antigen receptor (CAR) T cell therapy in relapsed B-cell acute lymphoblastic leukemia. Blood. 132(Suppl 1):556. https://doi.org/10.1182/blood-2018-99-112572. DOI: 10.1182/blood-2018-99-112572.
Article
22. Koehler H, Kofler D, Hombach A, Abken H. 2007; CD28 costimulation overcomes transforming growth factor-beta-mediated repression of proliferation of redirected human CD4+ and CD8+ T cells in an antitumor cell attack. Cancer Res. 67:2265–2273. DOI: 10.1158/0008-5472.CAN-06-2098. PMID: 17332357.
Article
23. Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK. 2006; Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia. 20:1819–1828. DOI: 10.1038/sj.leu.2404366. PMID: 16932339.
Article
24. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, Riddell SR. 2013; Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res. 19:3153–3164. DOI: 10.1158/1078-0432.CCR-13-0330. PMID: 23620405. PMCID: PMC3804130.
Article
25. Duan Y, Chen R, Huang Y, Meng X, Chen J, Liao C, Tang Y, Zhou C, Gao X, Sun J. 2021; Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy. Cell Mol Life Sci. 79:14. DOI: 10.1007/s00018-021-04089-x. PMID: 34966954.
Article
26. Feng Y, Liu X, Li X, Zhou Y, Song Z, Zhang J, Shi B, Wang J. 2021; Novel BCMA-OR-CD38 tandem-dual chimeric antigen receptor T cells robustly control multiple myeloma. Oncoimmunology. 10:1959102. DOI: 10.1080/2162402X.2021.1959102. PMID: 34434610. PMCID: PMC8381848. PMID: aaf388693e6c4bcebcde1f8688b5384d.
Article
27. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, Lim WA. 2016; Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 164:770–779. DOI: 10.1016/j.cell.2016.01.011. PMID: 26830879. PMCID: PMC4752902.
Article
28. Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, Downey KM, Yu W, Carrera DA, Celli A, Cho J, Briones JD, Duecker JM, Goretsky YE, Dannenfelser R, Cardarelli L, Troyanskaya O, Sidhu SS, Roybal KT, Okada H, et al. 2021; SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 13:eabe7378. DOI: 10.1126/scitranslmed.abe7378. PMID: 33910979. PMCID: PMC8362330.
Article
29. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, Liu H, Cruz CR, Savoldo B, Gee AP, Schindler J, Krance RA, Heslop HE, Spencer DM, Rooney CM, Brenner MK. 2011; Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 365:1673–1683. DOI: 10.1056/NEJMoa1106152. PMID: 22047558. PMCID: PMC3236370.
Article
30. Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, Turchetto L, Colombi S, Bernardi M, Peccatori J, Pescarollo A, Servida P, Magnani Z, Perna SK, Valtolina V, Crippa F, Callegaro L, Spoldi E, Crocchiolo R, Fleischhauer K, et al. 2009; Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 10:489–500. DOI: 10.1016/S1470-2045(09)70074-9. PMID: 19345145.
Article
31. Marin V, Cribioli E, Philip B, Tettamanti S, Pizzitola I, Biondi A, Biagi E, Pule M. 2012; Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells. Hum Gene Ther Methods. 23:376–386. DOI: 10.1089/hgtb.2012.050. PMID: 23186165. PMCID: PMC4015080.
Article
32. Jones BS, Lamb LS, Goldman F, Di Stasi A. 2014; Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 5:254. DOI: 10.3389/fphar.2014.00254. PMID: 25505885. PMCID: PMC4245885. PMID: d44bb9725362462d88b6f6d4c8eed308.
Article
33. Robert C, Marquevielle J, Salgado GF. 2022; The promoter region of the proto-oncogene MST1R contains the main features of G-quadruplexes formation. Int J Mol Sci. 23:12905. DOI: 10.3390/ijms232112905. PMID: 36361696. PMCID: PMC9653784. PMID: 0fcb6a69ff094b33b2d35c2c53e63b88.
Article
34. Cazes A, Childers BG, Esparza E, Lowy AM. 2022; The MST1R/RON tyrosine kinase in cancer: oncogenic functions and therapeutic strategies. Cancers (Basel). 14:2037. DOI: 10.3390/cancers14082037. PMID: 35454943. PMCID: PMC9027306. PMID: 26949c39b1ce45b2922bdff41b8bce71.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr