Korean J Pain.  2020 Oct;33(4):318-325. 10.3344/kjp.2020.33.4.318.

Antinociceptive role of neurotensin receptor 1 in rats with chemotherapy-induced peripheral neuropathy

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
  • 2The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Korea

Abstract

Background
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of anti-cancer drugs. Neurotensin receptors (NTSRs) are widely distributed within the pain circuits in the central nervous system. The purpose of this study was to determine the role of NTSR1 by examining the effects of an NTSR1 agonist in rats with CIPN and investigate the contribution of spinal serotonin receptors to the antinociceptive effect.
Methods
Sprague–Dawley rats (weight 150–180 g) were used in this study. CIPN was induced by injecting cisplatin (2 mg/kg) once a day for 4 days. Intrathecal catheters were placed into the subarachnoid space of the CIPN rats. The antiallodynic effects of intrathecally or intraperitoneally administered PD 149163, an NTSR1 agonist, were evaluated. Furthermore, the levels of serotonin in the spinal cord were measured by high-performance liquid chromatography.
Results
Intrathecal or intraperitoneal PD 149163 increased the paw withdrawal threshold in CIPN rats. Intrathecal administration of the NTSR1 antagonist SR 48692 suppressed the antinociceptive effect of PD 149163 given via the intrathecal route, but not the antinociceptive effect of intraperitoneally administered PD 149163. Intrathecal administration of dihydroergocristine, a serotonin receptor antagonist, suppressed the antinociceptive effect of intrathecally administered, but not intraperitoneally administered, PD 149163. Injecting cisplatin diminished the serotonin level in the spinal cord, but intrathecal or intraperitoneal administration of PD 149163 did not affect this reduction.
Conclusions
NTSR1 played a critical role in modulating CIPN-related pain. Therefore, NTSR1 agonists may be useful therapeutic agents to treat CIPN. In addition, spinal serotonin receptors may be indirectly involved in the effect of NTSR1 agonist.

Keyword

Cisplatin; Dihydroergocristine; Hyperalgesia; Neurotensin; Neuralgia; PD 149163; Peripheral Nervous System Diseases; Serotonin Antagonists; Spinal Cord; SR 48692

Figure

  • Fig. 1 Antinociceptive effect of intrathecal PD 149163 in chemotherapy-induced peripheral neuropathic rats. (A, B) The effect of intrathecal PD 149163 (PD: 0, 3, 10, and 30 ng) on the hind paw withdrawal threshold (PWT) to von Frey filaments. (C, D) The effect of intrathecal SR 48692 (SR: 0 or 100 µg) on the antiallodynic effect caused by PD 149163 (30 ng). SR 48692 was delivered 10 minutes before PD 149163 administration. Each line or bar represents mean ± standard error of 6-7 rats. MPE: maximum possible effect, i.t.: intrathecal administration. *P < 0.05 compared to vehicle. #P < 0.05 compared to PD 149163 (i.t.)-treated group.

  • Fig. 2 Antinociceptive effect of intraperitoneal PD 149163 in chemotherapy-induced peripheral neuropathic rats. (A, B) The effect of intraperitoneal PD 149163 (PD: 0, 0.03, 0.1, and 0.3 mg/kg) for the hind paw withdrawal threshold (PWT) to von Frey filaments. (C, D) The effect of intrathecal SR 48692 (SR: 0 or 100 µg) on the antiallodynic effect caused by intraperitoneal PD 149163 (0.3 mg/kg). SR 48692 was delivered 10 minutes before PD 149163 administration. Each line or bar represents mean ± standard error from 6 rats. MPE: maximum possible effect, i.t.: intrathecal administration, i.p.: intraperitoneal administration. *P < 0.05 compared to vehicle.

  • Fig. 3 Association between the serotonin (5-hydroxytryptamine) receptor and the antinociceptive effect of intraperitoneal or intrathecal administration of PD 149163. (A, B) The effect of intrathecal dihydroergocristine (DHE: 0 or 30 µg) on the antinociceptive effect of intraperitoneal PD 149163 (PD: 0.3 mg/kg). (C, D) The effect of intrathecal dihydroergocristine (30 µg) on the antinociceptive effect of intrathecal PD 149163 (30 ng). Dihydroergocristine was delivered 10 minutes before PD 149163 administration. Each line or bar represents mean ± standard error of 6-7 rats. PWT: paw withdrawal threshold, MPE: maximum possible effect, i.t.: intrathecal administration, i.p.: intraperitoneal administration. *P < 0.05 compared to vehicle. #P < 0.05 compared to PD 149163 (i.t.)-treated group.

  • Fig. 4 The levels of serotonin (5-hydroxytryptamine, 5-HT) in the spinal cord of chemotherapy-induced peripheral neuropathic (CIPN) rats. The rats were divided into four groups: Naïve group, CIPN group, CIPN group treated with intrathecal PD 149163 (PD), CIPN group treated with intraperitoneal PD 149163. Each bar represents mean ± standard error of 6 rats. i.t.: intrathecal administration, i.p.: intraperitoneal administration. *P < 0.05 compared to naïve rats.


Cited by  2 articles

Chemotherapy-induced peripheral neuropathy: bench to clinical practice
Eunsoo Kim
Korean J Pain. 2020;33(4):291-293.    doi: 10.3344/kjp.2020.33.4.291.

Systemically administered neurotensin receptor agonist produces antinociception through activation of spinally projecting serotonergic neurons in the rostral ventromedial medulla
Yaqun Li, Dong Ho Kang, Woong Mo Kim, Hyung Gon Lee, Seung Hoon Kim, Hyun Eung You, Jeong Il Choi, Myung Ha Yoon
Korean J Pain. 2021;34(1):58-65.    doi: 10.3344/kjp.2021.34.1.58.


Reference

1. Flatters SJL, Dougherty PM, Colvin LA. 2017; Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth. 119:737–49. DOI: 10.1093/bja/aex229. PMID: 29121279.
Article
2. Addington J, Freimer M. 2016; Chemotherapy-induced peripheral neuropathy: an update on the current understanding. F1000Res. 5:F1000 Faculty Rev-1466. DOI: 10.12688/f1000research.8053.1. PMID: 27408692. PMCID: PMC4920214.
Article
3. Fukuda Y, Li Y, Segal RA. 2017; A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci. 11:481. DOI: 10.3389/fnins.2017.00481. PMID: 28912674. PMCID: PMC5583221.
Article
4. Bhandare AM, Kshirsagar AD, Vyawahare NS, Hadambar AA, Thorve VS. 2010; Potential analgesic, anti-inflammatory and antioxidant activities of hydroalcoholic extract of Areca catechu L. nut. Food Chem Toxicol. 48:3412–7. DOI: 10.1016/j.fct.2010.09.013. PMID: 20849907.
5. Paice JA. 2009; Clinical challenges: chemotherapy-induced peripheral neuropathy. Semin Oncol Nurs. 25(2 Suppl 1):S8–19. DOI: 10.1016/j.soncn.2009.03.013. PMID: 19447319. PMCID: PMC7520984.
Article
6. Hile ES, Fitzgerald GK, Studenski SA. 2010; Persistent mobility disability after neurotoxic chemotherapy. Phys Ther. 90:1649–57. DOI: 10.2522/ptj.20090405. PMID: 20813818. PMCID: PMC2967709.
Article
7. Carraway R, Leeman SE. 1973; The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem. 248:6854–61. PMID: 4745447.
Article
8. Jennes L, Stumpf WE, Kalivas PW. 1982; Neurotensin: topographical distribution in rat brain by immunohistochemistry. J Comp Neurol. 210:211–24. DOI: 10.1002/cne.902100302. PMID: 6754769.
Article
9. Buhler AV, Choi J, Proudfit HK, Gebhart GF. 2005; Neurotensin activation of the NTR1 on spinally-projecting serotonergic neurons in the rostral ventromedial medulla is antinociceptive. Pain. 114:285–94. DOI: 10.1016/j.pain.2004.12.031. PMID: 15733655.
Article
10. Buhler AV, Proudfit HK, Gebhart GF. 2008; Neurotensin-produced antinociception in the rostral ventromedial medulla is partially mediated by spinal cord norepinephrine. Pain. 135:280–90. DOI: 10.1016/j.pain.2007.06.010. PMID: 17664042. PMCID: PMC2423280.
Article
11. Petkova-Kirova P, Rakovska A, Zaekova G, Ballini C, Corte LD, Radomirov R, et al. 2008; Stimulation by neurotensin of dopamine and 5-hydroxytryptamine (5-HT) release from rat prefrontal cortex: possible role of NTR1 receptors in neuropsychiatric disorders. Neurochem Int. 53:355–61. DOI: 10.1016/j.neuint.2008.08.010. PMID: 18835308.
Article
12. Roussy G, Dansereau MA, Doré-Savard L, Belleville K, Beaudet N, Richelson E, et al. 2008; Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem. 105:1100–14. DOI: 10.1111/j.1471-4159.2007.05205.x. PMID: 18182046.
Article
13. Smith KE, Boules M, Williams K, Richelson E. 2012; NTS1 and NTS2 mediate analgesia following neurotensin analog treatment in a mouse model for visceral pain. Behav Brain Res. 232:93–7. DOI: 10.1016/j.bbr.2012.03.044. PMID: 22504145.
Article
14. Guillemette A, Dansereau MA, Beaudet N, Richelson E, Sarret P. 2012; Intrathecal administration of NTS1 agonists reverses nociceptive behaviors in a rat model of neuropathic pain. Eur J Pain. 16:473–84. DOI: 10.1016/j.ejpain.2011.07.008. PMID: 22396077.
15. Bardin L. 2011; The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol. 22:390–404. DOI: 10.1097/FBP.0b013e328349aae4. PMID: 21808193. PMCID: PMC5374049.
Article
16. Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA. 2014; Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol. 171:636–45. DOI: 10.1111/bph.12439. PMID: 24117398. PMCID: PMC3969077.
Article
17. Héaulme M, Leyris R, Soubrié P, Le Fur G. 1998; Stimulation by neurotensin of (3H)5-hydroxytryptamine (5HT) release from rat frontal cortex slices. Neuropeptides. 32:465–71. DOI: 10.1016/S0143-4179(98)90073-7. PMID: 9845009.
Article
18. Jolas T, Aghajanian GK. 1996; Neurotensin excitation of serotonergic neurons in the dorsal raphe nucleus of the rat in vitro. Eur J Neurosci. 8:153–61. DOI: 10.1111/j.1460-9568.1996.tb01176.x. PMID: 8713459.
19. Lin H, Heo BH, Yoon MH. 2015; A new rat model of cisplatin-induced neuropathic pain. Korean J Pain. 28:236–43. DOI: 10.3344/kjp.2015.28.4.236. PMID: 26495078. PMCID: PMC4610937.
Article
20. Yaksh TL, Rudy TA. 1976; Chronic catheterization of the spinal subarachnoid space. Physiol Behav. 17:1031–6. DOI: 10.1016/0031-9384(76)90029-9.
Article
21. Han YK, Lee SH, Jeong HJ, Kim MS, Yoon MH, Kim WM. 2012; Analgesic effects of intrathecal curcumin in the rat formalin test. Korean J Pain. 25:1–6. DOI: 10.3344/kjp.2012.25.1.1. PMID: 22259709. PMCID: PMC3259131.
Article
22. Kim YO, Song JA, Kim WM, Yoon MH. 2020; Antiallodynic effect of intrathecal Korean Red Ginseng in cisplatin-induced neuropathic pain rats. Pharmacology. 105:173–80. DOI: 10.1159/000503259. PMID: 31578020.
Article
23. Tétreault P, Beaudet N, Perron A, Belleville K, René A, Cavelier F, et al. 2013; Spinal NTS2 receptor activation reverses signs of neuropathic pain. FASEB J. 27:3741–52. DOI: 10.1096/fj.12-225540. PMID: 23756650.
Article
24. Roussy G, Dansereau MA, Baudisson S, Ezzoubaa F, Belleville K, Beaudet N, et al. 2009; Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity. Mol Pain. 5:38. DOI: 10.1186/1744-8069-5-38. PMID: 19580660. PMCID: PMC2714839.
Article
25. Boules M, McMahon B, Warrington L, Stewart J, Jackson J, Fauq A, et al. 2001; Neurotensin analog selective for hypothermia over antinociception and exhibiting atypical neuroleptic-like properties. Brain Res. 919:1–11. DOI: 10.1016/S0006-8993(01)02981-X. PMID: 11689157.
Article
26. Demeule M, Beaudet N, Régina A, Besserer-Offroy É, Murza A, Tétreault P, et al. 2014; Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J Clin Invest. 124:1199–213. DOI: 10.1172/JCI70647. PMID: 24531547. PMCID: PMC3934173.
Article
27. Banks WA, Wustrow DJ, Cody WL, Davis MD, Kastin AJ. 1995; Permeability of the blood-brain barrier to the neurotensin8-13 analog NT1. Brain Res. 695:59–63. DOI: 10.1016/0006-8993(95)00836-F. PMID: 8574648.
Article
28. Hillhouse TM, Prus AJ. 2013; Effects of the neurotensin NTS₁ receptor agonist PD 149163 on visual signal detection in rats. Eur J Pharmacol. 721:201–7. DOI: 10.1016/j.ejphar.2013.09.035. PMID: 24076181.
29. Clineschmidt BV, Martin GE, Veber DF. 1982; Antinocisponsive effects of neurotensin and neurotensin-related peptides. Ann N Y Acad Sci. 400:283–306. DOI: 10.1111/j.1749-6632.1982.tb31576.x. PMID: 6963112.
Article
30. Fang FG, Moreau JL, Fields HL. 1987; Dose-dependent antinociceptive action of neurotensin microinjected into the rostroventromedial medulla of the rat. Brain Res. 420:171–4. DOI: 10.1016/0006-8993(87)90255-1. PMID: 3676752.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr