Infect Chemother.  2017 Mar;49(1):1-9. 10.3947/ic.2017.49.1.1.

Molecular Epidemiology of Human Immunodeficiency Virus

Affiliations
  • 1Center for Infectious Diseases, National Medical Center, Seoul, Korea. moberrer@nmc.or.kr

Abstract

During the evolution of human immunodeficiency virus (HIV), transmissions between humans and primates resulted in multiple HIV lineages in humans. This evolution has been rapid, giving rise to a complex classification and allowing for worldwide spread and intermixing of subtypes, which has consequently led to dozens of circulating recombinant forms. In the Republic of Korea, 12,522 cases of HIV infection have been reported between 1985, when AIDS was first identified, and 2015. This review focuses on the evolution of HIV infection worldwide and the molecular epidemiologic characteristics of HIV in Korea.

Keyword

Human immunodeficiency virus; Molecular epidemiology; Phylogeny

MeSH Terms

Classification
HIV Infections
HIV*
Humans*
Korea
Molecular Epidemiology*
Phylogeny
Primates
Republic of Korea

Figure

  • Figure 1 Comparison of network analysis (A) and phylogenic tree (B). While the level of interconnection in the cluster is indistinguishable in the phylogenetic tree, network analysis reveals the level of connections. In cluster 4 (red circle), every node is connected with the other nodes while only one node is interconnected with the other two nodes in cluster 16 (blue circle) [74].

  • Figure 2 Neighbor-joining phylogenetic relationship generated from 2907 HIV-1 subtype B gp120 env sequences. Korean clade B (in red) formed a distinct cluster from worldwide HIV-1 subtype B sequences [66].


Reference

1. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995; 373:123–126.
Article
2. Preston B, Poiesz B, Loeb L. Fidelity of HIV-1 reverse transcriptase. Science. 1988; 242:1168–1171.
Article
3. Preston BD, Dougherty JP. Mechanisms of retroviral mutation. Trends Microbiol. 1996; 4:16–21.
Article
4. Roberts J, Bebenek K, Kunkel T. The accuracy of reverse transcriptase from HIV-1. Science. 1988; 242:1171–1173.
Article
5. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995; 373:117–122.
Article
6. Korea Centers for Disease Control and Prevention. Annual report on the notified HIV/AIDS in Korea. 2015. Accessed 10 January 2017. Available at: http://cdc.go.kr/CDC/info/CdcKrInfo0128.jsp?menuIds=HOME001-MNU1130-MNU1156-MNU1426-MNU1448.
7. Aghokeng AF, Ayouba A, Mpoudi-Ngole E, Loul S, Liegeois F, Delaporte E, Peeters M. Extensive survey on the prevalence and genetic diversity of SIVs in primate bushmeat provide insights into risks for potential new cross-species transmissions. Infect Genet Evol. 2010; 10:386–396.
Article
8. Los Alamos National Laboratory. Distribution of all HIV-1 sequences: world. Accessed 1 February 2017. Available at: https://www.hiv.lanl.gov/components/sequence/HIV/geo/geo.comp.
9. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999; 397:436–441.
Article
10. Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JF, Sharp PM, Shaw GM, Peeters M, Hahn BH. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006; 313:523–526.
Article
11. Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM, Ho DD. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature. 1998; 391:594–597.
Article
12. Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, Muyembe JJ, Kabongo JM, Kalengayi RM, Van Marck E, Gilbert MT, Wolinsky SM. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature. 2008; 455:661–664.
Article
13. Wertheim JO, Worobey M. Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2. PLOS Comput Biol. 2009; 5:e1000377.
Article
14. Robertson DL, Hahn BH, Sharp PM. Recombination in AIDS viruses. J Mol Evol. 1995; 40:249–259.
Article
15. Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B, Funkhouser RK, Gao F, Hahn BH, Kalish ML, Kuiken C, Learn GH, Leitner T, McCutchan F, Osmanov S, Peeters M, Pieniazek D, Salminen M, Sharp PM, Wolinsky S, Korber B. HIV-1 nomenclature proposal. Science. 2000; 288:55–56.
Article
16. UNAIDS. Global AIDS update 2016. Accessed 10 February 2017. Available at: http://www.unaids.org/en/resources/documents/2016/Global-AIDS-update-2016.
17. Vidal N, Peeters M, Mulanga-Kabeya C, Nzilambi N, Robertson D, Ilunga W, Sema H, Tshimanga K, Bongo B, Delaporte E. Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. J Virol. 2000; 74:10498–10507.
Article
18. Triques K, Bourgeois A, Saragosti S, Vidal N, Mpoudi-Ngole E, Nzilambi N, Apetrei C, Ekwalanga M, Delaporte E, Peeters M. High diversity of HIV-1 subtype F strains in Central Africa. Virology. 1999; 259:99–109.
Article
19. UNAIDS. AIDSinfo HIV Prevalence. Accessed 21 February 2017. Available at: http://aidsinfo.unaids.org.
20. Rambaut A, Robertson DL, Pybus OG, Peeters M, Holmes EC. Human immunodeficiency virus: Phylogeny and the origin of HIV-1. Nature. 2001; 410:1047–1048.
21. Ghys PD, Saidel T, Vu HT, Savtchenko I, Erasilova I, Mashologu YS, Indongo R, Sikhosana N, Walker N. Growing in silence: selected regions and countries with expanding HIV/AIDS epidemics. AIDS. 2003; 17:Suppl 4. S45–S50.
22. Deng X, Liu H, Shao Y, Rayner S, Yang R. The epidemic origin and molecular properties of B′: a founder strain of the HIV-1 transmission in Asia. AIDS. 2008; 22:1851–1858.
Article
23. de Silva UC, Warachit J, Sattagowit N, Jirapongwattana C, Panthong S, Utachee P, Yasunaga T, Ikuta K, Kameoka M, Boonsathorn N. Genotypic characterization of HIV type 1 env gp160 sequences from three regions in Thailand. AIDS Res Hum Retroviruses. 2010; 26:223–227.
Article
24. Rodenburg CM, Li Y, Trask SA, Chen Y, Decker J, Robertson DL, Kalish ML, Shaw GM, Allen S, Hahn BH, Gao F. UNAIDS and NIAID Networks for HIV Isolation and Characterization. Near full-length clones and reference sequences for subtype C isolates of HIV type 1 from three different continents. AIDS Res Hum Retroviruses. 2001; 17:161–168.
Article
25. Piyasirisilp S, McCutchan FE, Carr JK, Sanders-Buell E, Liu W, Chen J, Wagner R, Wolf H, Shao Y, Lai S, Beyrer C, Yu XF. A recent outbreak of human immunodeficiency virus type 1 infection in southern China was initiated by two highly homogeneous, geographically separated strains, circulating recombinant form AE and a novel BC recombinant. J Virol. 2000; 74:11286–11295.
Article
26. Hemelaar J, Gouws E, Ghys PD, Osmanov S. Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS. 2006; 20:W13–W23.
Article
27. Pérez-Alvarez L, Muñoz M, Delgado E, Miralles C, Ocampo A, García V, Thomson M, Contreras G, Nájera R; Spanish Group for Antiretroviral Resistance Studies in Galicia. Isolation and biological characterization of HIV-1 BG intersubtype recombinants and other genetic forms circulating in Galicia, Spain. J Med Virol. 2006; 78:1520–1528.
Article
28. Soares EA, Martínez AM, Souza TM, Santos AF, Da Hora V, Silveira J, Bastos FI, Tanuri A, Soares MA. HIV-1 subtype C dissemination in southern Brazil. AIDS. 2005; 19:Suppl 4. S81–S86.
Article
29. Rodrigues R, Manenti S, Romao PR, de Paula Ferreira JL, Batista JP, Siqueira AF, de Macedo Brigido LF. Young pregnant women living with HIV/AIDS in Criciuma, Southern Brazil, are infected almost exclusively with HIV type 1 clade C. AIDS Res Hum Retroviruses. 2010; 26:351–357.
Article
30. Peeters M, Liegeois F, Torimiro N, Bourgeois A, Mpoudi E, Vergne L, Saman E, Delaporte E, Saragosti S. Characterization of a highly replicative intergroup M/O human immunodeficiency virus Type 1 recombinant isolated from a Cameroonian patient. J Virol. 1999; 73:7368–7375.
Article
31. Rousseau CM, Learn GH, Bhattacharya T, Nickle DC, Heckerman D, Chetty S, Brander C, Goulder PJ, Walker BD, Kiepiela P, Korber BT, Mullins JI. Extensive intrasubtype recombination in South African human immunodeficiency virus type 1 subtype C infections. J Virol. 2007; 81:4492–4500.
Article
32. Los Alamos National Laboratory. HIV circulating recombinant forms (CRFs). Accessed 10 February 2017. Available at: http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html.
33. Hu WS, Temin HM. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci USA. 1990; 87:1556–1560.
Article
34. Temin HM. Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci USA. 1993; 90:6900–6903.
Article
35. Burke DS. Recombination in HIV: an important viral evolutionary strategy. Emerg Infect Dis. 1997; 3:253–259.
Article
36. Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull. 2001; 58:19–42.
Article
37. Haaland RE, Hawkins PA, Salazar-Gonzalez J, Johnson A, Tichacek A, Karita E, Manigart O, Mulenga J, Keele BF, Shaw GM, Hahn BH, Allen SA, Derdeyn CA, Hunter E. Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexualtransmission of subtype A and C HIV-1. PLoS Pathog. 2009; 5:e1000274.
38. Li H, Bar KJ, Wang S, Decker JM, Chen Y, Sun C, Salazar-Gonzalez JF, Salazar MG, Learn GH, Morgan CJ, Schumacher JE, Hraber P, Giorgi EE, Bhattacharya T, Korber BT, Perelson AS, Eron JJ, Cohen MS, Hicks CB, Haynes BF, Markowitz M, Keele BF, Hahn BH, Shaw GM. High multiplicity infection by HIV-1 in men who have sex with men. PLoS Pathog. 2010; 6:e1000890.
Article
39. Bar KJ, Li H, Chamberland A, Tremblay C, Routy JP, Grayson T, Sun C, Wang S, Learn GH, Morgan CJ, Schumacher JE, Haynes BF, Keele BF, Hahn BH, Shaw GM. Wide variation in the multiplicity of HIV-1 infection among injection drug users. J Virol. 2010; 84:6241–6247.
Article
40. Powell RL, Urbanski MM, Burda S, Kinge T, Nyambi PN. High frequency of HIV-1 dual infections among HIV-positive individuals in Cameroon, West Central Africa. J Acquir Immune Defic Syndr. 2009; 50:84–92.
Article
41. Gottlieb GS, Nickle DC, Jensen MA, Wong KG, Grobler J, Li F, Liu SL, Rademeyer C, Learn GH, Karim SS, Williamson C, Corey L, Margolick JB, Mullins JI. Dual HIV-1 infection associated with rapid disease progression. Lancet. 2004; 363:619–622.
Article
42. Grobler J, Gray CM, Rademeyer C, Seoighe C, Ramjee G, Karim SA, Morris L, Williamson C. Incidence of HIV-1 dual infection and its association with increased viral load set point in a cohort of HIV-1 subtype C-infected female sex workers. J Infect Dis. 2004; 190:1355–1359.
Article
43. Tebit DM, Arts EJ. Tracking a century of global expansion and evolution of HIV to drive understanding and to combat disease. Lancet Infect Dis. 2011; 11:45–56.
Article
44. Hemelaar J. The origin and diversity of the HIV-1 pandemic. Trends Mol Med. 2012; 18:182–192.
Article
45. Krushkal J, Li WH. Use of phylogenetic inference to test an HIV transmission hypothesis. In : Crandall KA, editor. The Evolution of HIV. Baltimore, MD: The Johns Hopkins University Press;1999.
46. Simon F, Mauclère P, Roques P, Loussert-Ajaka I, Müller-Trutwin MC, Saragosti S, Georges-Courbot MC, Barré-Sinoussi F, Brun-Vézinet F. Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nat Med. 1998; 4:1032–1037.
Article
47. Hattori J, Shiino T, Gatanaga H, Mori H, Minami R, Uchida K, Sadamasu K, Kondo M, Sugiura W; Japanese Drug Resistance HIV-1 Surveillance Network. Characteristics of transmitted drug-resistant HIV-1 in recently infected treatment-naive patients in Japan. J Acquir Immune Defic Syndr. 2016; 71:367–373.
Article
48. Lemey P, Pybus OG, Wang B, Saksena NK, Salemi M, Vandamme AM. Tracing the origin and history of the HIV-2 epidemic. Proc Natl Acad Sci USA. 2003; 100:6588–6592.
Article
49. Robbins KE, Lemey P, Pybus OG, Jaffe HW, Youngpairoj AS, Brown TM, Salemi M, Vandamme AM, Kalish ML. human immunodeficiency virus type 1 epidemic: date of origin, population history, and characterization of early strains. J Virol. 2003; 77:6359–6366.
Article
50. Posada D, Crandall KA, Hillis DM. Phylogenetics of HIV. In : Rodrigo AG, Learn GH, editors. Computational Analysis of HIV Molecular Sequences. Dordrecht, Netherlands: Kluwer Academic Publishers;2001. p. 121–160.
51. Efron B, Tibshirani RJ. An Introduction to the bootstrap. New York: Chapman & Hall;1993.
52. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985; 39:783–791.
Article
53. Felsenstein J. Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet. 1988; 22:521–565.
Article
54. Pillay D, Rambaut A, Geretti AM, Brown AJ. HIV phylogenetics. BMJ. 2007; 335:460–461.
Article
55. Wertheim JO, Leigh Brown AJ, Hepler NL, Mehta SR, Richman DD, Smith DM, Kosakovsky Pond SL. The global transmission network of HIV-1. J Infect Dis. 2014; 209:304–313.
Article
56. Lewis F, Hughes GJ, Rambaut A, Pozniak A, Leigh Brown AJ. Episodic sexual transmission of HIV revealed by molecular phylodynamics. PLoS Med. 2008; 5:e50.
Article
57. Leigh Brown AJ, Lycett SJ, Weinert L, Hughes GJ, Fearnhill E, Dunn DT; UK HIV Drug Resistance Collaboration. Transmission network parameters estimated from HIV sequences for a nationwide epidemic. J Infect Dis. 2011; 204:1463–1469.
Article
58. Little SJ, Kosakovsky Pond SL, Anderson CM, Young JA, Wertheim JO, Mehta SR, May S, Smith DM. Using HIV networks to inform real time prevention interventions. PLoS One. 2014; 9:e98443.
Article
59. Wang X, Wu Y, Mao L, Xia W, Zhang W, Dai L, Mehta SR, Wertheim JO, Dong X, Zhang T, Wu H, Smith DM. Targeting HIV prevention based on molecular epidemiology among deeply sampled subnetworks of men who have sex with men. Clin Infect Dis. 2015; 61:1462–1468.
Article
60. Kang MR, Cho YK, Chun J, Kim YB, Lee I, Lee HJ, Kim SH, Kim YK, Yoon K, Yang JM, Kim JM, Shin YO, Kang C, Lee JS, Choi KW, Kim DG, Fitch WM, Kim S. Phylogenetic analysis of the nef gene reveals a distinctive monophyletic clade in Korean HIV-1 cases. J Acquir Immune Defic Syndr Hum Retrovirol. 1998; 17:58–68.
Article
61. Park CS, Kim MS, Lee SD, Kim SS, Lee KM, Lee CH. Molecular phylogenetic analysis of HIV-1 vif gene from Korean isolates. J Microbiol. 2006; 44:655–659.
62. Kim YB, Cho YK, Lee HJ, Kim CK, Kim YK, Yang JM. Molecular phylogenetic analysis of human immunodeficiency virus type 1 strains obtained from Korean patients: env gene sequences. AIDS Res Hum Retroviruses. 1999; 15:303–307.
Article
63. Daniels RS, Kang C, Patel D, Xiang Z, Douglas NW, Zheng NN, Cho HW, Lee JS. An HIV type 1 subtype B founder effect in Korea: gp160 signature patterns infer circulation of CTL-escape strains at the population level. AIDS Res Hum Retroviruses. 2003; 19:631–641.
Article
64. Sung H, Foley BT, Bae IG, Chi HS, Cho YK. Phylogenetic analysis of reverse transcriptase in antiretroviral drug-naive Korean HIV type 1 patients. AIDS Res Hum Retroviruses. 2001; 17:1549–1554.
Article
65. Sung H, Foley BT, Ahn SH, Kim YB, Chae JD, Shin YO, Kang HI, Cho YK. Natural polymorphisms of protease in protease inhibitor-naive HIV-1 infected patients in Korea: a novel L63M in subtype B. AIDS Res Hum Retroviruses. 2003; 19:525–530.
Article
66. Kim GJ, Yun MR, Koo MJ, Shin BG, Lee JS, Kim SS. Estimating the origin and evolution characteristics for Korean HIV type 1 subtype B using Bayesian phylogenetic analysis. AIDS Res Hum Retroviruses. 2012; 28:880–884.
Article
67. Bello G, Eyer-Silva WA, Couto-Fernandez JC, Guimarães ML, Chequer-Fernandez SL, Teixeira SL, Morgado MG. Demographic history of HIV-1 subtypes B and F in Brazil. Infect Genet Evol. 2007; 7:263–270.
Article
68. Cho YK, Jung YS, Foley BT. Phylogenetic analysis of full-length pol gene from Korean hemophiliacs and plasma donors infected with Korean subclade B of HIV type 1. AIDS Res Hum Retroviruses. 2011; 27:613–621.
Article
69. Cho YK, Kim JE, Foley BT. Phylogenetic analysis of the earliest nef gene from hemophiliacs and local controls in Korea. Biores Open Access. 2012; 1:41–49.
Article
70. Choi JY, Kim EJ, Park YK, Lee JS, Kim SS. National survey for drug-resistant variants in newly diagnosed antiretroviral drug-naive patients with HIV/AIDS in South Korea: 1999-2005. J Acquir Immune Defic Syndr. 2008; 49:237–242.
Article
71. Chin BS, Choi JY, Han Y, Kuang J, Li Y, Han SH, Choi H, Chae YT, Jin SJ, Baek JH, Lim YS, Kim CO, Song YG, Yong D, Li T, Kim JM. Comparison of genotypic resistance mutations in treatment-naive HIV type 1-infected patients in Korea and China. AIDS Res Hum Retroviruses. 2010; 26:217–221.
Article
72. Chin BS, Shin HS, Kim G, Wagner GA, Gianella S, Smith DM. Short communication: increase of HIV-1 K103N transmitted drug resistance and its association with efavirenz use in South Korea. AIDS Res Hum Retroviruses. 2015; 31:603–607.
Article
73. Kim GJ, Nam JG, Shin BG, Kee MK, Kim EJ, Lee JS, Kim SS. National survey of prevalent HIV strains: limited genetic variation of Korean HIV-1 clade B within the population of Korean men who have sex with men. J Acquir Immune Defic Syndr. 2008; 48:127–132.
74. Chin BS, Chaillon A, Mehta SR, Wertheim JO, Kim G, Shin HS, Smith DM. Molecular epidemiology identifies HIV transmission networks associated with younger age and heterosexual exposure among Korean individuals. J Med Virol. 2016; 88:1832–1835.
Article
Full Text Links
  • IC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr