J Stroke.  2013 Sep;15(3):174-181.

Robot-assisted Therapy in Stroke Rehabilitation

Affiliations
  • 1Department of Physical and Rehabilitation Medicine, Stroke and Cerebrovascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. yunkim@skku.edu
  • 2Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea.

Abstract

Research into rehabilitation robotics has grown rapidly and the number of therapeutic rehabilitation robots has expanded dramatically during the last two decades. Robotic rehabilitation therapy can deliver high-dosage and high-intensity training, making it useful for patients with motor disorders caused by stroke or spinal cord disease. Robotic devices used for motor rehabilitation include end-effector and exoskeleton types; herein, we review the clinical use of both types. One application of robot-assisted therapy is improvement of gait function in patients with stroke. Both end-effector and the exoskeleton devices have proven to be effective complements to conventional physiotherapy in patients with subacute stroke, but there is no clear evidence that robotic gait training is superior to conventional physiotherapy in patients with chronic stroke or when delivered alone. In another application, upper limb motor function training in patients recovering from stroke, robot-assisted therapy was comparable or superior to conventional therapy in patients with subacute stroke. With end-effector devices, the intensity of therapy was the most important determinant of upper limb motor recovery. However, there is insufficient evidence for the use of exoskeleton devices for upper limb motor function in patients with stroke. For rehabilitation of hand motor function, either end-effector and exoskeleton devices showed similar or additive effects relative to conventional therapy in patients with chronic stroke. The present evidence supports the use of robot-assisted therapy for improving motor function in stroke patients as an additional therapeutic intervention in combination with the conventional rehabilitation therapies. Nevertheless, there will be substantial opportunities for technical development in near future.

Keyword

Stroke; Robot-assisted therapy; Motor disorder; Rehabilitation

MeSH Terms

Complement System Proteins
Gait
Hand
Humans
Robotics
Spinal Cord Diseases
Stroke
Upper Extremity
Complement System Proteins
Full Text Links
  • JOS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr