Korean J Physiol Pharmacol.  2012 Apr;16(2):107-112. 10.4196/kjpp.2012.16.2.107.

3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-kappaB Activation in BV2 Microglial Cells

Affiliations
  • 1Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea. wchun@kangwon.ac.kr
  • 2College of Pharmacy, Kangwon National University, Chuncheon 200-701, Korea.
  • 3Department of Laboratory Animal Resources, National Institute of Food and Drug Evaluation, Korea FDA, Cheongwon 363-951, Korea.
  • 4Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea.

Abstract

Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as neuronal protection against excitotoxicity and anti-inflammatory property, the biological activity of 3,4,5-trihydroxycinnamic acid (THC), a derivative of hydroxycinnamic acids, has not been clearly examined. The objective of the present study is to evaluate the anti-inflammatory effects of THC on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. THC significantly suppressed LPS-induced excessive production of nitric oxide (NO) and expression of iNOS, which is responsible for the production of iNOS. THC also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-1beta and TNF-alpha in BV2 microgilal cells. Furthermore, THC significantly suppressed LPS-induced degradation of IkappaB, which retains NF-kappaB in the cytoplasm. Therefore, THC attenuated nuclear translocation of NF-kappaB, a major pro-inflammatory transcription factor. Taken together, the present study for the first time demonstrates that THC exhibits anti-inflammatory activity through the suppression of NF-kappaB transcriptional activation in LPS-stimulated BV2 microglial cells.

Keyword

3,4,5-Trihydroxycinnamic acid (THC); BV2 microglial cells; Lipopolysaccharide; iNOS; NF-kappaB
Full Text Links
  • KJPP
Share
  • Twitter
  • Facebook
Copyright © 2020 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr