Korean J Clin Microbiol.  2009 Mar;12(1):1-5. 10.5145/KJCM.2009.12.1.1.

Mechanisms of Acquiring Carbapenem-resistance in Acinetobacter Species

  • 1Department of Laboratory Medicine and Research Institute of Bacterial Resistance,Yonsei University College of Medicine, Seoul, Korea. kscpjsh@yuhs.ac


A rapid dissemination of carbapenem-resistant Acinetobacter spp. represents a significant clinical threat. Production of OXA carbapenemases and metallo-beta- lactamases (MBLs) is the most important mechanism in acquiring carbapenem resistance in Acinetobacter spp. Carbapenem resistance has also ascribed to non- enzymatic mechanisms, including changes in outer membrane proteins, alterations in the affinity or expression of penicillin-binding proteins, and overexpression of efflux pumps. The most important mechanism in A. baumannii isolates from Korea is the production of OXA-23, while that in other species of Acinetobacter is the production of metallo-beta-lactamases.


Acinetobacter; OXA carbapenemase; OXA- 51; OXA-23; Metallo-beta-lactamase; Outer membrane protein; AdeABC efflux pump

MeSH Terms

Membrane Proteins
Penicillin-Binding Proteins
Membrane Proteins
Penicillin-Binding Proteins


  • Fig. 1. The increasing trend of imipenem-resistance in clinical isolates of A. baumannii from a university hospital in Seoul, Korea. Resistance rates are calculated from all isolates (duplicate isolates were not excluded).


1. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008; 21:538–82.
2. Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol. 1992; 30:2680–5.
3. Lee K, Lim CH, Cho JH, Lee WG, Uh Y, Kim HJ, et al. High prevalence of ceftazidime-resistant Klebsiella pneumoniae and increase of imipenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. in Korea: a KONSAR program in 2004. Yonsei Med J. 2006; 47:634–45.
4. WHO Network on Antimicrobial Resistance Monitoring: Korean focal point and core laboratory. Antimicrobial resistance of clinical isolates of bacteria in 2007. Antimirobial Resistance Newsletter. 2008; 16:1–2.
5. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006; 12:826–36.
6. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y, et al. VIM- and IMP-type metallo-β-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis. 2003; 9:868–71.
7. Yum JH, Yi K, Lee H, Yong D, Lee K, Kim JM, et al. Molecular characterization of metallo-β-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the blaVIM-2 gene cassettes. J Antimicrob Chemother. 2002; 49:837–40.
8. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, et al. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005; 49:4485–91.
9. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005; 18:306–25.
10. Walsh TR. Clinically significant carbapenemases: an update. Curr Opin Infect Dis. 2008; 21:367–71.
11. Donald HM, Scaife W, Amyes SG, Young HK. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother. 2000; 44:196–9.
12. Zhou H, Pi BR, Yang Q, Yu YS, Chen YG, Li LJ, et al. Dissemination of imipenem-resistant Acinetobacter baumannii strains carrying the ISAba1 blaOXA-23 genes in a Chinese hospital. J Med Microbiol. 2007; 56:1076–80.
13. Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2001; 45:583–8.
14. Jeong SH, Bae IK, Park KO, An YJ, Sohn SG, Jang SJ, et al. Outbreaks of imipenem-resistant Acinetobacter baumannii producing carbapenemases in Korea. J Microbiol. 2006; 44:423–31.
15. Bou G, Oliver A, Martinez-Beltrán A. OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother. 2000; 44:1556–61.
16. Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005; 49:202–8.
17. Marqué S, Poirel L, Héritier C, Brisse S, Blasco MD, Filip R, et al. Regional occurrence of plasmid-mediated carbapenem-hydro-lyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe. J Clin Microbiol. 2005; 43:4885–8.
18. Lee K, Kim MN, Choi TY, Cho SE, Lee S, Whang DH, et al. Wide dissemination of OXA-type carbapenemases in clinical Acinetobacter spp. isolates from South Korea. Int J Antimicrob Agents. 2008.
19. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett. 2006; 258:72–7.
20. Limansky AS, Mussi MA, Viale AM. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. J Clin Microbiol. 2002; 40:4776–8.
21. Mussi MA, Limansky AS, Viale AM. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrob Agents Chemother. 2005; 49:1432–40.
22. Bou G, Cerveró G, Dominguez MA, Quereda C, Martinez-Beltrán J. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydro lyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of beta-lactamases. J Clin Microbiol. 2000; 38:3299–305.
23. del Mar Tomás M, Beceiro A, Pérez A, Velasco D, Moure R, Villanueva R, et al. Cloning and functional analysis of the gene encoding the 33- to 36-kilodalton outer membrane protein associated with carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005; 49:5172–5.
24. Dupont M, Pagès JM, Lafitte D, Siroy A, Bollet C. Identification of an OprD homologue in Acinetobacter baumannii. J Proteome Res. 2005; 4:2386–90.
25. Wieczorek P, Sacha P, Hauschild T, Zórawski M, Krawczyk M, Tryniszewska E. Multidrug resistant Acinetobacter baumannii - the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Folia Histochem Cytobiol. 2008; 46:257–67.
26. Héritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005; 49:3198–202.
27. Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother. 2001; 45:3375–80.
28. Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother. 2004; 48:3298–304.
29. Lee Y, Ahn JY, Jeon E, Lee K, Jeong SH. Inactivation of blaOXA-51-like gene expression by a novel insertion sequence in Acinetobacter baumannii. Korean J Lab Med. 2008; 28:388S.
Full Text Links
  • KJCM
export Copy
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr