1. Lim GE, Brubaker PL. Glucagon-like peptide 1 secretion by the L-cell: the view from within. Diabetes. 2006; 55(Supplement 2):S70–7.
2. Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol. 1902; 28:325–53.
Article
3. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964; 24:1076–82.
4. Mcintyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet. 1964; 2:20–1.
Article
5. Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973; 37:826–8.
6. Lund PK, Goodman RH, Dee PC, Habener JF. Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc Natl Acad Sci U S A. 1982; 79:345–9.
Article
7. Lund PK. The discovery of glucagon-like peptide 1. Regul Pept. 2005; 128:93–6.
Article
8. Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature. 1983; 302:716–8.
Article
9. Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987; 79:616–9.
Article
10. Holst JJ, Orskov C, Nielsen OV, Schwartz TW. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987; 211:169–74.
Article
11. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987; 5;2:1300–4.
Article
12. Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF. Insulinotropic action of glucagonlike peptide-I-(7-37) in diabetic and nondiabetic subjects. Diabetes Care. 1992; 15:270–6.
Article
13. Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: current advancements & challenges. Biomed Pharmacother. 2018; 108:952–62.
Article
14. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom: further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992; 267:7402–5.
Article
15. Christel CM, DeNardo DF, Secor SM. Metabolic and digestive response to food ingestion in a binge-feeding lizard, the Gila monster (Heloderma suspectum). J Exp Biol. 2007; 210(Pt 19):3430–9.
16. Yap MKK, Misuan N. Exendin-4 from Heloderma suspectum venom: from discovery to its latest application as type II diabetes combatant. Basic Clin Pharmacol Toxicol. 2019; 124:513–27.
17. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993; 268:19650–5.
Article
18. Kurtzhals P, Havelund S, Jonassen I, Kiehr B, Larsen UD, Ribel U, et al. Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem J. 1995; 312(Pt 3):725–31.
19. Astrup A, Rossner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009; 374:1606–16.
Article
20. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015; 373:11–22.
Article
21. Park JS, Kwon J, Choi HJ, Lee C. Clinical effectiveness of liraglutide on weight loss in South Koreans: first real-world retrospective data on Saxenda in Asia. Medicine (Baltimore). 2021; 100:e23780.
22. Wilding JP, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021; 384:989–1002.
Article
23. Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023; 389:2221–32.
Article
24. Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009; 5:749–57.
Article
25. Finan B, Ma T, Ottaway N, Muller TD, Habegger KM, Heppner KM, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013; 5:209ra151.
Article
26. Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015; 21:27–36.
Article
27. Frias JP, Davies MJ, Rosenstock J, Perez Manghi FC, Fernandez Lando L, Bergman BK, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021; 385:503–15.
Article
28. Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022; 387:205–16.
Article
29. de Graaf C, Blom WA, Smeets PA, Stafleu A, Hendriks HF. Biomarkers of satiation and satiety. Am J Clin Nutr. 2004; 79:946–61.
Article
30. Tremblay A, Bellisle F. Nutrients, satiety, and control of energy intake. Appl Physiol Nutr Metab. 2015; 40:971–9.
Article
31. Blundell J, de Graaf C, Hulshof T, Jebb S, Livingstone B, Lluch A, et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev. 2010; 11:251–70.
Article
32. Tack J, Verbeure W, Mori H, Schol J, Van den Houte K, Huang IH, et al. The gastrointestinal tract in hunger and satiety signalling. United European Gastroenterol J. 2021; 9:727–34.
Article
33. Mela DJ. Eating for pleasure or just wanting to eat? Reconsidering sensory hedonic responses as a driver of obesity. Appetite. 2006; 47:10–7.
Article
34. Colms J, Booth DA, Pangborn RM, Raunhardt O. Food acceptance and nutrition. London: Academic Press; 1987. Chapter, Evaluating the satiating power of foods: implications for acceptance and consumption; p205-19.
35. Lasschuijt MP, de Graaf K, Mars M. Effects of oro-sensory exposure on satiation and underlying neurophysiological mechanisms: what do we know so far? Nutrients. 2021; 13:1391.
Article
36. Kastin AJ, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Relat Metab Disord. 2003; 27:313–8.
Article
37. Kastin AJ, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci. 2002; 18:7–14.
Article
38. Bae JH, Choi HJ, Cho KIK, Kim LK, Kwon JS, Cho YM. Glucagon-like peptide-1 receptor agonist differentially affects brain activation in response to visual food cues in lean and obese individuals with type 2 diabetes mellitus. Diabetes Metab J. 2020; 44:248–59.
Article
39. van Ruiten CC, Veltman DJ, Nieuwdorp M, IJzerman RG. Brain activation in response to low-calorie food pictures: an explorative analysis of a randomized trial with dapagliflozin and exenatide. Front Endocrinol (Lausanne). 2022; 13:863592.
Article
40. van Ruiten CC, Veltman DJ, Schrantee A, van Bloemendaal L, Barkhof F, Kramer MH, et al. Effects of dapagliflozin and combination therapy with exenatide on food-cue induced brain activation in patients with type 2 diabetes. J Clin Endocrinol Metab. 2022; 107:e2590. –9.
Article
41. Schlogl H, Kabisch S, Horstmann A, Lohmann G, Muller K, Lepsien J, et al. Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care. 2013; 36:1933–40.
Article
42. Ten Kulve JS, Veltman DJ, van Bloemendaal L, Barkhof F, Drent ML, Diamant M, et al. Liraglutide reduces CNS activation in response to visual food cues only after short-term treatment in patients with type 2 diabetes. Diabetes Care. 2016; 39:214–21.
Article
43. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011; 14:700–6.
44. Timper K, Bruning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. 2017; 10:679–89.
Article
45. Chen Y, Knight ZA. Making sense of the sensory regulation of hunger neurons. Bioessays. 2016; 38:316–24.
Article
46. Betley JN, Xu S, Cao ZF, Gong R, Magnus CJ, Yu Y, et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature. 2015; 521:180–5.
Article
47. Chen Y, Lin YC, Kuo TW, Knight ZA. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell. 2015; 160:829–41.
Article
48. Aitken TJ, Liu Z, Ly T, Shehata S, Sivakumar N, La Santa Medina N, et al. Negative feedback control of hypothalamic feeding circuits by the taste of food. Neuron. 2024; 112:3354–70.
Article
49. Su Z, Alhadeff AL, Betley JN. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep. 2017; 21:2724–36.
Article
50. Andermann ML, Lowell BB. Toward a wiring diagram understanding of appetite control. Neuron. 2017; 95:757–78.
Article
51. Kim KS, Lee YH, Yun JW, Kim YB, Song HY, Park JS, et al. A normative framework dissociates need and motivation in hypothalamic neurons. Sci Adv. 2024; 10:eado1820.
Article
52. Kim YB, Lee YH, Park SJ, Choi HJ. A unified theoretical framework underlying the regulation of motivated behavior. Bioessays. 2024; 46:e2400016.
Article
53. Garfield AS, Shah BP, Burgess CR, Li MM, Li C, Steger JS, et al. Dynamic GABAergic afferent modulation of AgRP neurons. Nat Neurosci. 2016; 19:1628–35.
Article
54. Berrios J, Li C, Madara JC, Garfield AS, Steger JS, Krashes MJ, et al. Food cue regulation of AGRP hunger neurons guides learning. Nature. 2021; 595:695–700.
Article
55. Vahl TP, Drazen DL, Seeley RJ, D’Alessio DA, Woods SC. Meal-anticipatory glucagon-like peptide-1 secretion in rats. Endocrinology. 2010; 151:569–75.
Article
56. Skovbjerg G, Roostalu U, Salinas CG, Skytte JL, Perens J, Clemmensen C, et al. Uncovering CNS access of lipidated exendin-4 analogues by quantitative whole-brain 3D light sheet imaging. Neuropharmacology. 2023; 238:109637.
Article
57. Secher A, Jelsing J, Baquero AF, Hecksher-Sorensen J, Cowley MA, Dalboge LS, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014; 124:4473–88.
Article
58. Graaf Cd, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, et al. Glucagon-like peptide-1 and its class B G proteincoupled receptors: a long march to therapeutic successes. Pharmacol Rev. 2016; 68:954–1013.
Article
59. Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Ronne J, Alanentalo T, Baquero AF, et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight. 2020; 5:e133429.
Article
60. Goodman T, Hajihosseini MK. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci. 2015; 9:387.
Article
61. Dali R, Estrada-Meza J, Langlet F. Tanycyte, the neuron whisperer. Physiol Behav. 2023; 263:114108.
Article
62. Bruning JC, Fenselau H. Integrative neurocircuits that control metabolism and food intake. Science. 2023; 381:eabl7398.
Article
63. Bakker W, Imbernon M, Salinas CG, Moro Chao DH, Hassouna R, Morel C, et al. Acute changes in systemic glycemia gate access and action of GLP-1R agonist on brain structures controlling energy homeostasis. Cell Rep. 2022; 41:111698.
Article
64. Imbernon M, Saponaro C, Helms HC, Duquenne M, Fernandois D, Deligia E, et al. Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab. 2022; 34:1054–63.
Article
65. Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab. 2015; 4:718–31.
Article
66. Farkas E, Szilvasy-Szabo A, Ruska Y, Sinko R, Rasch MG, Egebjerg T, et al. Distribution and ultrastructural localization of the glucagon-like peptide-1 receptor (GLP-1R) in the rat brain. Brain Struct Funct. 2021; 226:225–45.
Article
67. Heppner KM, Kirigiti M, Secher A, Paulsen SJ, Buckingham R, Pyke C, et al. Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain. Endocrinology. 2015; 156:255–67.
Article
68. Lee SJ, Sanchez-Watts G, Krieger JP, Pignalosa A, Norell PN, Cortella A, et al. Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity. Mol Metab. 2018; 11:33–46.
Article
69. Kim KS, Park JS, Hwang E, Park MJ, Shin HY, Lee YH, et al. GLP-1 increases preingestive satiation via hypothalamic circuits in mice and humans. Science. 2024; 385:438–46.
Article
70. Huang Z, Liu L, Zhang J, Conde K, Phansalkar J, Li Z, et al. Glucose-sensing glucagon-like peptide-1 receptor neurons in the dorsomedial hypothalamus regulate glucose metabolism. Sci Adv. 2022; 8:eabn5345.
Article
71. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014; 63:3346–58.
Article
72. Sanetra AM, Palus-Chramiec K, Chrobok L, Jeczmien-Lazur JS, Klich JD, Lewandowski MH. Proglucagon signalling in the rat Dorsomedial Hypothalamus: physiology and high-fat dietmediated alterations. Mol Cell Neurosci. 2023; 126:103873.
73. Maejima Y, Yokota S, Shimizu M, Horita S, Kobayashi D, Hazama A, et al. The deletion of glucagon-like peptide-1 receptors expressing neurons in the dorsomedial hypothalamic nucleus disrupts the diurnal feeding pattern and induces hyperphagia and obesity. Nutr Metab (Lond). 2021; 18:58.
Article
74. Rupp AC, Tomlinson AJ, Affinati AH, Yacawych WT, Duensing AM, True C, et al. Suppression of food intake by Glp1r/Lepr- coexpressing neurons prevents obesity in mouse models. J Clin Invest. 2023; 133:e157515.
Article
75. Polex-Wolf J, Deibler K, Hogendorf WF, Bau S, Glendorf T, Stidsen CE, et al. Glp1r-Lepr coexpressing neurons modulate the suppression of food intake and body weight by a GLP-1/ leptin dual agonist. Sci Transl Med. 2024; 16:eadk4908.
Article
76. Tadross JA, Steuernagel L, Dowsett GK, Kentistou KA, Lundh S, Porniece M, et al. A comprehensive spatio-cellular map of the human hypothalamus. Nature. 2025; 639:708–16.
Article
77. Francois M, Kaiser L, He Y, Xu Y, Salbaum JM, Yu S, et al. Leptin receptor neurons in the dorsomedial hypothalamus require distinct neuronal subsets for thermogenesis and weight loss. Metabolism. 2025; 163:156100.
Article
78. Ast J, Arvaniti A, Fine NH, Nasteska D, Ashford FB, Stamataki Z, et al. Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nat Commun. 2020; 11:467.
Article
79. NamKoong C, Kim MS, Jang BT, Lee YH, Cho YM, Choi HJ. Central administration of GLP-1 and GIP decreases feeding in mice. Biochem Biophys Res Commun. 2017; 490:247–52.
Article
80. Burmeister MA, Ayala JE, Smouse H, Landivar-Rocha A, Brown JD, Drucker DJ, et al. The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes. 2017; 66:372–84.
Article
81. Sandoval DA, Bagnol D, Woods SC, D’Alessio DA, Seeley RJ. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes. 2008; 57:2046–54.
Article
82. Dong Y, Carty J, Goldstein N, He Z, Hwang E, Chau D, et al. Time and metabolic state-dependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo. Mol Metab. 2021; 54:101352.
83. He Z, Gao Y, Lieu L, Afrin S, Cao J, Michael NJ, et al. Direct and indirect effects of liraglutide on hypothalamic POMC and NPY/AgRP neurons: implications for energy balance and glucose control. Mol Metab. 2019; 28:120–34.
84. Peterfi Z, Szilvasy-Szabo A, Farkas E, Ruska Y, Pyke C, Knudsen LB, et al. Glucagon-like peptide-1 regulates the proopiomelanocortin neurons of the arcuate nucleus both directly and indirectly via presynaptic action. Neuroendocrinology. 2021; 111:986–97.
Article
85. Beutler LR, Chen Y, Ahn JS, Lin YC, Essner RA, Knight ZA. Dynamics of gut-brain communication underlying hunger. Neuron. 2017; 96:461–75.
Article
86. Singh I, Wang L, Xia B, Liu J, Tahiri A, El Ouaamari A, et al. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake. Cell Biosci. 2022; 12:178.
Article
87. Biglari N, Gaziano I, Schumacher J, Radermacher J, Paeger L, Klemm P, et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat Neurosci. 2021; 24:913–29.
Article
88. Webster AN, Becker JJ, Li C, Schwalbe DC, Kerspern D, Karolczak EO, et al. Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety. Nat Metab. 2024; 6:2354–73.
Article
89. Xu XY, Wang JX, Chen JL, Dai M, Wang YM, Chen Q, et al. GLP-1 in the hypothalamic paraventricular nucleus promotes sympathetic activation and hypertension. J Neurosci. 2024; 44:e2032232024.
Article
90. Ten Kulve JS, van Bloemendaal L, Balesar R, IJzerman RG, Swaab DF, Diamant M, et al. Decreased hypothalamic glucagon- like peptide-1 receptor expression in type 2 diabetes patients. J Clin Endocrinol Metab. 2016; 101:2122–9.
91. Holder JL Jr, Butte NF, Zinn AR. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet. 2000; 9:101–8.
Article
92. Li MM, Madara JC, Steger JS, Krashes MJ, Balthasar N, Campbell JN, et al. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. Neuron. 2019; 102:653–67.
Article
93. Hansotia T, Maida A, Flock G, Yamada Y, Tsukiyama K, Seino Y, et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Invest. 2007; 117:143–52.
Article
94. Liu J, Conde K, Zhang P, Lilascharoen V, Xu Z, Lim BK, et al. Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon-like peptide-1 in the paraventricular hypothalamus. Neuron. 2017; 96:897–909.
Article
95. Li C, Navarrete J, Liang-Guallpa J, Lu C, Funderburk SC, Chang RB, et al. Defined paraventricular hypothalamic populations exhibit differential responses to food contingent on caloric state. Cell Metab. 2019; 29:681–94.
Article
96. Adams JM, Pei H, Sandoval DA, Seeley RJ, Chang RB, Liberles SD, et al. Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor-expressing glutamatergic neurons. Diabetes. 2018; 67:1538–48.
Article
97. Lopez-Ferreras L, Richard JE, Noble EE, Eerola K, Anderberg RH, Olandersson K, et al. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol Psychiatry. 2018; 23:1157–68.
Article
98. Panksepp J. Is satiety mediated by the ventromedial hypothalamus? Physiol Behav. 1971; 7:381–4.
Article
99. Burmeister MA, Brown JD, Ayala JE, Stoffers DA, Sandoval DA, Seeley RJ, et al. The glucagon-like peptide-1 receptor in the ventromedial hypothalamus reduces short-term food intake in male mice by regulating nutrient sensor activity. Am J Physiol Endocrinol Metab. 2017; 313:E651–62.
Article
100. Zhang C, Kaye JA, Cai Z, Wang Y, Prescott SL, Liberles SD. Area postrema cell types that mediate nausea-associated behaviors. Neuron. 2021; 109:461–72.
Article
101. Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci. 2022; 16:991779.
Article
102. Ludwig MQ, Todorov PV, Egerod KL, Olson DP, Pers TH. Single-cell mapping of GLP-1 and GIP receptor expression in the dorsal vagal complex. Diabetes. 2021; 70:1945–55.
Article
103. Fortin SM, Lipsky RK, Lhamo R, Chen J, Kim E, Borner T, et al. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats. Sci Transl Med. 2020; 12:eaay8071.
Article
104. Huang KP, Acosta AA, Ghidewon MY, McKnight AD, Almeida MS, Nyema NT, et al. Dissociable hindbrain GLP1R circuits for satiety and aversion. Nature. 2024; 632:585–93.
Article
105. Merchenthaler I, Lane M, Shughrue P. Distribution of prepro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999; 403:261–80.
Article
106. Reddy IA, Pino JA, Weikop P, Osses N, Sorensen G, Bering T, et al. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl Psychiatry. 2016; 6:e809.
Article
107. Terrill SJ, Jackson CM, Greene HE, Lilly N, Maske CB, Vallejo S, et al. Role of lateral septum glucagon-like peptide 1 receptors in food intake. Am J Physiol Regul Integr Comp Physiol. 2016; 311:R124–32.
Article
108. Lu Y, Wang L, Luo F, Savani R, Rossi MA, Pang ZP. Dorsolateral septum GLP-1R neurons regulate feeding via lateral hypothalamic projections. Mol Metab. 2024; 85:101960.
Article
109. Chen Z, Deng X, Shi C, Jing H, Tian Y, Zhong J, et al. GLP-1R-positive neurons in the lateral septum mediate the anorectic and weight-lowering effects of liraglutide in mice. J Clin Invest. 2024; 134:e178239.
Article
110. Harasta AE, Power JM, von Jonquieres G, Karl T, Drucker DJ, Housley GD, et al. Septal glucagon-like peptide 1 receptor expression determines suppression of cocaine-induced behavior. Neuropsychopharmacology. 2015; 40:1969–78.
Article
111. Xie Y, Choi T, Al-Aly Z. Mapping the effectiveness and risks of GLP-1 receptor agonists. Nat Med. 2025; 31:951–62.
Article
112. Klausen MK, Thomsen M, Wortwein G, Fink-Jensen A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br J Pharmacol. 2022; 179:625–41.
Article
113. Klausen MK, Kuzey T, Pedersen JN, Justesen SK, Rasmussen L, Knorr UB, et al. Does semaglutide reduce alcohol intake in Danish patients with alcohol use disorder and comorbid obesity? Trial protocol of a randomised, double-blinded, placebo-controlled clinical trial (the SEMALCO trial). BMJ Open. 2025; 15:e086454.
Article
114. Melson E, Ashraf U, Papamargaritis D, Davies MJ. What is the pipeline for future medications for obesity? Int J Obes (Lond). 2025; 49:433–51.
Article
115. Petersen J, Ludwig MQ, Juozaityte V, Ranea-Robles P, Svendsen C, Hwang E, et al. GLP-1-directed NMDA receptor antagonism for obesity treatment. Nature. 2024; 629:1133–41.
Article
116. Griffith DA, Edmonds DJ, Fortin JP, Kalgutkar AS, Kuzmiski JB, Loria PM, et al. A small-molecule oral agonist of the human glucagon-like peptide-1 receptor. J Med Chem. 2022; 65:8208–26.
Article
117. Zhu X, Fowler MJ, Wells QS, Stafford JM, Gannon M. Predicting responsiveness to GLP-1 pathway drugs using real-world data. BMC Endocr Disord. 2024; 24:269.
Article
118. Tokgoz S, Boss M, Jansen TJ, Meijer R, Frielink C, van Bon AC, et al. Activation of the HPA axis does not explain nonresponsiveness to GLP-1R agonist treatment in individuals with type 2 diabetes. Diabetes. 2025; 74:212–22.
Article
119. Wilding JP, Batterham RL, Davies M, Van Gaal LF, Kandler K, Konakli K, et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. Diabetes Obes Metab. 2022; 24:1553–64.
120. Abdullah Bin Ahmed I. A comprehensive review on weight gain following discontinuation of glucagon-like peptide-1 receptor agonists for obesity. J Obes. 2024; 2024:8056440.
Article