5. Gonçalves NP, Vægter CB, Andersen H, Østergaard L, Calcutt NA, Jensen TS. 2017; Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol. 13:135–147. DOI:
10.1038/nrneurol.2016.201. PMID:
28134254. PMCID:
PMC7391875.
Article
6. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB 3rd. 2013; Autophagy: regulation and role in development. Autophagy. 9:951–972. DOI:
10.4161/auto.24273. PMID:
24121596. PMCID:
PMC3722331.
8. Rodríguez-Vargas JM, Ruiz-Magaña MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodríguez MI, Muñoz-Gámez JA, de Almodóvar MR, Siles E, Rivas AL, Jäättela M, Oliver FJ. 2012; ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22:1181–1198. DOI:
10.1038/cr.2012.70. PMID:
22525338. PMCID:
PMC3391023.
Article
10. Kesidou E, Lagoudaki R, Touloumi O, Poulatsidou KN, Simeonidou C. 2013; Autophagy and neurodegenerative disorders. Neural Regen Res. 8:2275–2283.
13. Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC. 2020; Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol. 432:2799–2821. DOI:
10.1016/j.jmb.2019.12.035. PMID:
31887286.
Article
14. Bhattacharya D, Mukhopadhyay M, Bhattacharyya M, Karmakar P. 2018; Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J. 17:709–720.
16. Chung YC, Lim JH, Oh HM, Kim HW, Kim MY, Kim EN, Kim Y, Chang YS, Kim HW, Park CW. 2018; Calcimimetic restores diabetic peripheral neuropathy by ameliorating apoptosis and improving autophagy. Cell Death Dis. 9:1163. DOI:
10.1038/s41419-018-1192-7. PMID:
30478254. PMCID:
PMC6255917.
Article
17. Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai KM, Superti-Furga G, Pawson T, Di Fiore PP, Lanfrancone L, Pelicci PG. 1997; Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J. 16:706–716. DOI:
10.1093/emboj/16.4.706. PMID:
9049300. PMCID:
PMC1169672.
Article
18. Pagnin E, Fadini G, de Toni R, Tiengo A, Calò L, Avogaro A. 2005; Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J Clin Endocrinol Metab. 90:1130–1136. DOI:
10.1210/jc.2004-1283. PMID:
15562031.
Article
19. Menini S, Amadio L, Oddi G, Ricci C, Pesce C, Pugliese F, Giorgio M, Migliaccio E, Pelicci P, Iacobini C, Pugliese G. 2006; Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes. 55:1642–1650. Erratum. DOI:
10.2337/db18-er01a. PMID:
29066598. PMCID:
PMC5741146.
Article
20. Li Q, Kim YR, Vikram A, Kumar S, Kassan M, Gabani M, Lee SK, Jacobs JS, Irani K. 2016; P66Shc-induced microRNA-34a causes diabetic endothelial dysfunction by downregulating sirtuin1. Arterioscler Thromb Vasc Biol. 36:2394–2403. DOI:
10.1161/ATVBAHA.116.308321. PMID:
27789474. PMCID:
PMC5293179.
Article
21. Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, Zhang R, Cai H, Liu DP, Liang CC. 2011; Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 109:639–648. DOI:
10.1161/CIRCRESAHA.111.243592. PMID:
21778425.
Article
22. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Lüscher TF, Cosentino F. 2007; Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A. 104:5217–5222. DOI:
10.1073/pnas.0609656104. PMID:
17360381. PMCID:
PMC1829289.
Article
23. Mishra M, Duraisamy AJ, Bhattacharjee S, Kowluru RA. 2019; Adaptor protein p66Shc: a link between cytosolic and mitochondrial dysfunction in the development of diabetic retinopathy. Antioxid Redox Signal. 30:1621–1634. DOI:
10.1089/ars.2018.7542. PMID:
30105917. PMCID:
PMC6459280.
Article
24. Al Sabaani N. 2021; Exendin-4 inhibits high glucose-induced oxidative stress in retinal pigment epithelial cells by modulating the expression and activation of p
66Shc. Cutan Ocul Toxicol. 40:175–186. DOI:
10.1080/15569527.2020.1844727. PMID:
34275397.
Article
25. Onnis A, Cianfanelli V, Cassioli C, Samardzic D, Pelicci PG, Cecconi F, Baldari CT. 2018; The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II. Autophagy. 14:2117–2138. DOI:
10.1080/15548627.2018.1505153. PMID:
30109811. PMCID:
PMC6984773.
Article
27. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. 2003; Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52:102–110. DOI:
10.2337/diabetes.52.1.102. PMID:
12502499.
Article
30. Turkmen K. 2017; Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse. Int Urol Nephrol. 49:837–844. DOI:
10.1007/s11255-016-1488-4. PMID:
28035619.
Article
31. Choi SJ, Kim S, Lee WS, Kim DW, Kim CS, Oh SH. 2023; Autophagy dysfunction in a diabetic peripheral neuropathy model. Plast Reconstr Surg. 151:355–364. DOI:
10.1097/PRS.0000000000009844.
Article
32. Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF. 2016; p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett. 21:29. DOI:
10.1186/s11658-016-0031-z. PMID:
28536631. PMCID:
PMC5415757.
Article
35. Fadini GP, Albiero M, Bonora BM, Poncina N, Vigili de Kreutzenberg S, Avogaro A. 2018; p66Shc gene expression in peripheral blood mononuclear cells and progression of diabetic complications. Cardiovasc Diabetol. 17:16. DOI:
10.1186/s12933-018-0660-9. PMID:
29343271. PMCID:
PMC5771224.
Article
36. Towns R, Kabeya Y, Yoshimori T, Guo C, Shangguan Y, Hong S, Kaplan M, Klionsky DJ, Wiley JW. 2005; Sera from patients with type 2 diabetes and neuropathy induce autophagy and colocalization with mitochondria in SY5Y cells. Autophagy. 1:163–170. DOI:
10.4161/auto.1.3.2068. PMID:
16874076.
Article
37. Yang S, Xia C, Li S, Du L, Zhang L, Hu Y. 2014; Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model. Cell Death Dis. 5:e1217. DOI:
10.1038/cddis.2014.184. PMID:
24810053. PMCID:
PMC4047887.
Article
40. Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. 2022; The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. Behav Brain Funct. 18:3. DOI:
10.1186/s12993-022-00187-3. PMID:
35093121. PMCID:
PMC8799983.
Article
43. Inceoglu B, Bettaieb A, Trindade da Silva CA, Lee KS, Haj FG, Hammock BD. 2015; Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proc Natl Acad Sci U S A. 112:9082–9087. DOI:
10.1073/pnas.1510137112. PMID:
26150506. PMCID:
PMC4517273.
Article
44. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K. 2006; Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 26:9220–9231. DOI:
10.1128/MCB.01453-06. PMID:
17030611. PMCID:
PMC1698520.
Article
46. Su H, Wang X. 2011; p62 stages an interplay between the ubiquitin-proteasome system and autophagy in the heart of defense against proteotoxic stress. Trends Cardiovasc Med. 21:224–228. DOI:
10.1016/j.tcm.2012.05.015. PMID:
22902070. PMCID:
PMC3424486.
Article
47. Bhandary B, Marahatta A, Kim HR, Chae HJ. 2012; An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci. 14:434–456. DOI:
10.3390/ijms14010434. PMID:
23263672. PMCID:
PMC3565273.
Article
48. Rahman MA, Hannan MA, Dash R, Rahman MH, Islam R, Uddin MJ, Sohag AAM, Rahman MH, Rhim H. 2021; Phytochemicals as a complement to cancer chemotherapy: pharmacological modulation of the autophagy-apoptosis pathway. Front Pharmacol. 12:639628. DOI:
10.3389/fphar.2021.639628. PMID:
34025409. PMCID:
PMC8138161.
Article
49. Ortega-Camarillo C, Guzmán-Grenfell AM, García-Macedo R, Rosales-Torres AM, Avalos-Rodríguez A, Durán-Reyes G, Medina-Navarro R, Cruz M, Díaz-Flores M, Kumate J. 2006; Hyperglycemia induces apoptosis and p53 mobilization to mitochondria in RINm5F cells. Mol Cell Biochem. 281:163–171. DOI:
10.1007/s11010-006-0829-5. PMID:
16328969.
Article
50. Kumar S, Kain V, Sitasawad SL. 2012; High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochim Biophys Acta. 1820:907–920. DOI:
10.1016/j.bbagen.2012.02.010. PMID:
22402252.
Article