Blood Res.  2023 Mar;58(1):2-12. 10.5045/br.2023.2022192.

Effects of immune system cells in GvHD and corresponding therapeutic strategies

Affiliations
  • 1Department of Hematology, Tarbiat Modarres University of Medical Science, Tehran, Iran

Abstract

Allogeneic tissue transplantation is one of the most effective treatments for several diseases and injuries, in particular, malignant and non-malignant hematological conditions. Following this procedure, transplanted tissue encounters various complications, one of the most serious being graft-versus-host disease (GvHD). The management of GvHD directly affects the success of transplantation and the survival rate of the patient; therefore, many studies have focused on GvHD prevention and control. This review briefly explains the transplantation process, causes of graft rejection, and importance of the human leukocyte antigen system. Initially, we address the pathophysiology and immunobiology of GvHD, the cells involved in this complication, the differences between chronic and acute GvHD, and the importance of graft-versus-leukemia. Interestingly, various types of immune cells are involved in GvHD pathogenesis. After explaining how these cells affect the GvHD process, we discuss the studies conducted to control and reduce GvHD symptoms.

Keyword

Graft rejection; GvHD; HLA system

Figure

  • Fig. 1 The role of natural killer cells in graft-versus-host disease (GvHD).

  • Fig. 2 Dendritic cell (DC) subsets and their corresponding functions.

  • Fig. 3 Mesenchymal stem cell (MSC) effects on immune cell types.

  • Fig. 4 Drug targets for treating acute graft-versus-host disease (aGvHD).


Reference

1. Sepetyi DP. 2020. Foundations of bioethics and biosafety: educational manual for independent work of students of the 1-st course of II international faculty [PhD dissertation]. Zaporizhzhia State Medical University;Zaporizhzhia, Ukraine: DOI: 10.2307/j.ctv14t48dw.10.
2. Deshmukh CD, Baheti AM. 2020; Need, process and importance of organ transplantation. Asian J Pharm Pharmacol. 6:126–31. DOI: 10.31024/ajpp.2020.6.2.6.
Article
3. Summers C, Sheth VS, Bleakley M. 2020; Minor histocompatibility antigen-specific T cells. Front Pediatr. 8:284. DOI: 10.3389/fped.2020.00284. PMID: 32582592. PMCID: PMC7283489. PMID: 37039864fddf445e856974d2baa770f3.
Article
4. Socie G, Zeiser R, Blazar BR. 2018. Immune biology of allogeneic hematopoietic stem cell transplantation: models in discovery and translation. Academic Press;Cambridge, MA: DOI: 10.1016/c2016-0-03916-5.
5. Zaghi E, Calvi M, Di Vito C, Mavilio D. 2019; Innate immune responses in the outcome of haploidentical hematopoietic stem cell trans-plantation to cure hematologic malignancies. Front Immunol. 10:2794. DOI: 10.3389/fimmu.2019.02794. PMID: 31849972. PMCID: PMC6892976. PMID: d7f0285922e740bfa336830ed555257a.
Article
6. Perkey E, Maillard I. 2018; New insights into graft-versus-host disease and graft rejection. Annu Rev Pathol. 13:219–45. DOI: 10.1146/annurev-pathol-020117-043720. PMID: 29099650.
Article
7. Gooptu M, Koreth J. 2020; Translational and clinical advances in acute graft-versus-host disease. Haematologica. 105:2550–60. DOI: 10.3324/haematol.2019.240309. PMID: 33054103. PMCID: PMC7604566.
Article
8. Ryu J, Jhun J, Park MJ, et al. 2020; FTY720 ameliorates GvHD by blocking T lymphocyte migration to target organs and by skin fibrosis inhibition. J Transl Med. 18:225. DOI: 10.1186/s12967-020-02386-w. PMID: 32505218. PMCID: PMC7276082. PMID: 4b85431c3473421485553751faad8771.
Article
9. Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. 2019; Dendritic cell regulation of graft-vs.-host disease: immunostimulation and tolerance. Front Immunol. 10:93. DOI: 10.3389/fimmu.2019.00093. PMID: 30774630. PMCID: PMC6367268. PMID: f6785630e3e648a0b9f648c7328d1a79.
Article
10. Jaeger S. 2011. Hematopoietic stem cell research and transplantation: genesis, development and prospects for the 21st century [PhD dissertation]. Drew University;Madison, NJ:
11. Banerjee S, Parasramka MA, Paruthy SB. Bharti AC, Aggarwal BB, editors. 2018. Garcinol: preclinical perspective underpinning chemo-and radiosensitization of cancer. Role of nutraceuticals in cancer chemosensitization. Elsevier;Philadelphia, PA: p. 297–324. DOI: 10.1016/B978-0-12-812373-7.00015-2. PMID: 29407111.
Article
12. Sallman DA, Chaudhury A, Nguyen J, Zhang L. 2020. Handbook of hematologic malignancies. Demos Medical Publishing;New York, NY: p. 393. DOI: 10.1891/9780826149770.
13. Nakamura R, Forman SJ. 2014; Reduced intensity conditioning for allogeneic hematopoietic cell transplantation: considerations for evidence-based GVHD prophylaxis. Expert Rev Hematol. 7:407–21. DOI: 10.1586/17474086.2014.898561. PMID: 24702163.
Article
14. Dunne T. 2021. The effect of dual policy interventions on the rate of central venous catheter associated infections in adult stem cell transplant patients with hematological malignancy in Newfoundland and Labrador [thesis]. Memorial University of Newfoundland;St. John's, Canada:
Article
15. Kuba A, Raida L. 2018; Graft versus host disease: from basic pathogenic principles to DNA damage response and cellular senescence. Mediators Inflamm. 2018:9451950. DOI: 10.1155/2018/9451950. PMID: 29785172. PMCID: PMC5896258. PMID: 8cc74fed7dde4cd88b7a30f50469dc9b.
Article
16. Gooptu M, Antin JH. 2021; GVHD prophylaxis 2020. Front Immunol. 12:605726. DOI: 10.3389/fimmu.2021.605726. PMID: 33897681. PMCID: PMC8059368. PMID: e0cef7331d65442798a15c997248e682.
Article
17. Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry CG. 2019; Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Invest. 129:2357–73. DOI: 10.1172/JCI124218. PMID: 30913039. PMCID: PMC6546453.
Article
18. Slavik JM, Lim DG, Burakoff SJ, Hafler DA. 2001; Uncoupling p70(s6) kinase activation and proliferation: rapamycin-resistant proliferation of human CD8(+) T lymphocytes. J Immunol. 166:3201–9. DOI: 10.4049/jimmunol.166.5.3201. PMID: 11207273.
Article
19. Cutler C, Stevenson K, Kim HT, et al. 2008; Sirolimus is associated with veno-occlusive disease of the liver after myeloablative allogeneic stem cell transplantation. Blood. 112:4425–31. DOI: 10.1182/blood-2008-07-169342. PMID: 18776081. PMCID: PMC2597119.
Article
20. Cutler C, Henry NL, Magee C, et al. 2005; Sirolimus and thrombotic microangiopathy after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 11:551–7. DOI: 10.1016/j.bbmt.2005.04.007. PMID: 15983555.
Article
21. Solomon SR, Sanacore M, Zhang X, et al. 2014; Calcineurin inhibitor-free graft-versus-host disease prophylaxis with post-transplantation cyclophosphamide and brief-course sirolimus following reduced- intensity peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 20:1828–34. DOI: 10.1016/j.bbmt.2014.07.020. PMID: 25064745.
22. Champlin RE, Passweg JR, Zhang MJ, et al. 2000; T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood. 95:3996–4003. PMID: 10845940.
23. Wagner JE, Donnenberg AD, Noga SJ, et al. 1988; Lymphocyte depletion of donor bone marrow by counterflow centrifugal elutriation: results of a phase I clinical trial. Blood. 72:1168–76. DOI: 10.1182/blood.V72.4.1168.1168. PMID: 3048436.
Article
24. Daniele N, Scerpa MC, Caniglia M, et al. 2012; Transplantation in the onco-hematology field: focus on the manipulation of αβ and γδ T cells. Pathol Res Pract. 208:67–73. DOI: 10.1016/j.prp.2011.10.006. PMID: 22115749.
Article
25. Saad A, Lamb LS. 2017; Ex vivo T-cell depletion in allogeneic hemato-poietic stem cell transplant: past, present and future. Bone Marrow Transplant. 52:1241–8. DOI: 10.1038/bmt.2017.22. PMID: 28319073. PMCID: PMC5589981.
Article
26. Pierini A, Alvarez M, Negrin RS. 2016; NK cell and CD4+FoxP3+ regulatory T cell based therapies for hematopoietic stem cell engraftment. Stem Cells Int. 2016:9025835. DOI: 10.1155/2016/9025835. PMID: 26880996. PMCID: PMC4736409. PMID: f22795edbb1d41fda7851087b48b6627.
Article
27. Mankarious M, Matthews NC, Snowden JA, Alfred A. 2020; Extra-corporeal photopheresis (ECP) and the potential of novel biomarkers in optimizing management of acute and chronic graft vs. host disease (GvHD). Front Immunol. 11:81. DOI: 10.3389/fimmu.2020.00081. PMID: 32082329. PMCID: PMC7005102. PMID: 9d15e559695c4625ab1d2283f8c752fb.
Article
28. Simonetta F, Alvarez M, Negrin RS. 2017; Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 8:465. DOI: 10.3389/fimmu.2017.00465. PMID: 28487696. PMCID: PMC5403889. PMID: fd4335bb5bcd4101919bb44aac6b49fe.
Article
29. Sheng L, Mu Q, Wu X, et al. 2020; Cytotoxicity of donor natural killer cells to allo-reactive T cells are related with acute graft-vs.-host-disease following allogeneic stem cell transplantation. Front Immunol. 11:1534. DOI: 10.3389/fimmu.2020.01534. PMID: 32849519. PMCID: PMC7411138. PMID: f7fff0794de24be48a4c78bd88f4a7f2.
Article
30. Kheav VD, Busson M, Scieux C, et al. 2014; Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation. Haematologica. 99:1860–7. DOI: 10.3324/haematol.2014.108407. PMID: 25085354. PMCID: PMC4258747.
Article
31. Hu LJ, Zhao XY, Yu XX, et al. 2019; Quantity and quality reconstitution of NKG2A+ natural killer cells are associated with graft-versus- host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 25:1–11. DOI: 10.1016/j.bbmt.2018.08.008. PMID: 30142416.
Article
32. Ullah MA, Hill GR, Tey SK. 2016; Functional reconstitution of natural killer cells in allogeneic hematopoietic stem cell transplantation. Front Immunol. 7:144. DOI: 10.3389/fimmu.2016.00144. PMID: 27148263. PMCID: PMC4831973. PMID: 4ac7cb40926b4b63b72b11db99f9d6f1.
Article
33. Gao F, Ye Y, Gao Y, Huang H, Zhao Y. 2020; Influence of KIR and NK cell reconstitution in the outcomes of hematopoietic stem cell transplantation. Front Immunol. 11:2022. DOI: 10.3389/fimmu.2020.02022. PMID: 32983145. PMCID: PMC7493622. PMID: 18ff9102d1284f8fa1b9623881fc4819.
Article
34. Akhavan Rahnama M, Soleimani M, Moradi N, Soufi Zomorrod M. 2017; Natural killer cell biology and its effect on graft versus host disease. Arch Med Lab Sci. 3:34–42.
35. Kordelas L, Steckel NK, Horn PA, Beelen DW, Rebmann V. 2016; The activating NKG2C receptor is significantly reduced in NK cells after allogeneic stem cell transplantation in patients with severe graft-versus-host disease. Int J Mol Sci. 17:1797. DOI: 10.3390/ijms17111797. PMID: 27801784. PMCID: PMC5133798. PMID: 5d231179135e4e0581d34e6604c7e458.
Article
36. Marofi F, Al-Awad AS, Sulaiman Rahman H, et al. 2021; CAR-NK cell: a new paradigm in tumor immunotherapy. Front Oncol. 11:673276. DOI: 10.3389/fonc.2021.673276. PMID: 34178661. PMCID: PMC8223062. PMID: 284a7d792cf64f698108ead3fa5b0fa5.
Article
37. Nalle SC, Kwak HA, Edelblum KL, et al. 2014; Recipient NK cell inactivation and intestinal barrier loss are required for MHC- matched graft-versus-host disease. Sci Transl Med. 6:243ra87. DOI: 10.1126/scitranslmed.3008941. PMID: 24990882. PMCID: PMC4161673.
Article
38. Ullrich E, Salzmann-Manrique E, Bakhtiar S, et al. 2016; Relation between acute GVHD and NK cell subset reconstitution following allogeneic stem cell transplantation. Front Immunol. 7:595. DOI: 10.3389/fimmu.2016.00595. PMID: 28066411. PMCID: PMC5177660.
Article
39. Alvarez M, Bouchlaka MN, Sckisel GD, Sungur CM, Chen M, Murphy WJ. 2014; Increased antitumor effects using IL-2 with anti-TGF-β reveals competition between mouse NK and CD8 T cells. J Immunol. 193:1709–16. DOI: 10.4049/jimmunol.1400034. PMID: 25000978. PMCID: PMC4241855.
Article
40. Barao I, Hanash AM, Hallett W, et al. 2006; Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci U S A. 103:5460–5. DOI: 10.1073/pnas.0509249103. PMID: 16567639. PMCID: PMC1459377.
41. Vacca P, Montaldo E, Croxatto D, et al. 2016; NK cells and other innate lymphoid cells in hematopoietic stem cell transplantation. Front Immunol. 7:188. DOI: 10.3389/fimmu.2016.00188. PMID: 27242795. PMCID: PMC4870263. PMID: 15b56aee13e6469b83e0dfda3aca0d74.
Article
42. Bendall LJ, Bradstock KF. 2014; G-CSF: from granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev. 25:355–67. DOI: 10.1016/j.cytogfr.2014.07.011. PMID: 25131807.
Article
43. Minculescu L, Fischer-Nielsen A, Haastrup E, et al. 2020; Improved relapse-free survival in patients with high natural killer cell doses in grafts and during early immune reconstitution after allogeneic stem cell transplantation. Front Immunol. 11:1068. DOI: 10.3389/fimmu.2020.01068. PMID: 32547559. PMCID: PMC7273963. PMID: f35fe4bc13244fdfbb64076efd61d0ef.
Article
44. Chang YJ, Zhao XY, Huang XJ. 2018; Strategies for enhancing and preserving anti-leukemia effects without aggravating graft- versus-host disease. Front Immunol. 9:3041. DOI: 10.3389/fimmu.2018.03041. PMID: 30619371. PMCID: PMC6308132. PMID: 1a7a73d389014a468cc373337079deca.
45. Zhang P, Yang S, Zou Y, et al. 2019; NK cell predicts the severity of acute graft-versus-host disease in patients after allogeneic stem cell transplantation using antithymocyte globulin (ATG) in pretreat-ment scheme. BMC Immunol. 20:46. DOI: 10.1186/s12865-019-0326-8. PMID: 31818250. PMCID: PMC6902350. PMID: ca34effc4ecd42bd9de9305eaac09b2a.
Article
46. Van Elssen CHMJ, Ciurea SO. 2020; NK cell alloreactivity in acute myeloid leukemia in the post-transplant cyclophosphamide era. Am J Hematol. 95:1590–8. DOI: 10.1002/ajh.25983. PMID: 32857869.
Article
47. Bosch M, Dhadda M, Hoegh-Petersen M, et al. 2012; Immune re-constitution after anti-thymocyte globulin-conditioned hemato-poietic cell transplantation. Cytotherapy. 14:1258–75. DOI: 10.3109/14653249.2012.715243. PMID: 22985195. PMCID: PMC3681879.
Article
48. Penack O, Fischer L, Gentilini C, et al. 2007; The type of ATG matters-natural killer cells are influenced differentially by Thymoglobulin, Lymphoglobulin and ATG-Fresenius. Transpl Immunol. 18:85–7. DOI: 10.1016/j.trim.2007.05.001. PMID: 18005849.
49. Heatley SL, Mullighan CG, Doherty K, et al. 2018; Activating KIR haplotype influences clinical outcome following HLA-matched sibling hematopoietic stem cell transplantation. HLA. 92:74–82. DOI: 10.1111/tan.13327. PMID: 29943500.
Article
50. Ruggeri L, Vago L, Eikema DJ, et al. 2021; Natural killer cell alloreactivity in HLA-haploidentical hematopoietic transplantation: a study on behalf of the CTIWP of the EBMT. Bone Marrow Transplant. 56:1900–7. DOI: 10.1038/s41409-021-01259-0. PMID: 33767404.
Article
51. Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013; The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 31:563–604. DOI: 10.1146/annurev-immunol-020711-074950. PMID: 23516985. PMCID: PMC3853342.
Article
52. Thomson AW, Metes DM, Ezzelarab MB, Raïch-Regué D. 2019; Regulatory dendritic cells for human organ transplantation. Transplant Rev (Orlando). 33:130–6. DOI: 10.1016/j.trre.2019.05.001. PMID: 31130302. PMCID: PMC6599577.
53. Balan S, Saxena M, Bhardwaj N. 2019; Dendritic cell subsets and locations. Int Rev Cell Mol Biol. 348:1–68. DOI: 10.1016/bs.ircmb.2019.07.004. PMID: 31810551.
Article
54. Giebel B, Kordelas L, Börger V. 2017; Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles. Stem Cell Investig. 4:84. DOI: 10.21037/sci.2017.09.06. PMID: 29167805. PMCID: PMC5676188.
55. Constantino J, Gomes C, Falcão A, Neves BM, Cruz MT. 2017; Dendritic cell-based immunotherapy: a basic review and recent advances. Immunol Res. 65:798–810. DOI: 10.1007/s12026-017-8931-1. PMID: 28660480.
Article
56. Torres-Aguilar H, Aguilar-Ruiz SR, González-Pérez G, et al. 2010; Tolerogenic dendritic cells generated with different immuno-suppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J Immunol. 184:1765–75. DOI: 10.4049/jimmunol.0902133. PMID: 20083662.
Article
57. Anderson BE, McNiff JM, Jain D, Blazar BR, Shlomchik WD, Shlomchik MJ. 2005; Distinct roles for donor- and host-derived antigen-presenting cells and costimulatory molecules in murine chronic graft-versus-host disease: requirements depend on target organ. Blood. 105:2227–34. DOI: 10.1182/blood-2004-08-3032. PMID: 15522961.
Article
58. Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. 2020; Tolerogenic dendritic cells: the pearl of immunotherapy in organ transplantation. Front Immunol. 11:552988. DOI: 10.3389/fimmu.2020.552988. PMID: 33123131. PMCID: PMC7573100. PMID: bbe1173f035049b8b89ab83d6325ad8e.
Article
59. Stenger EO, Turnquist HR, Mapara MY, Thomson AW. 2012; Dendritic cells and regulation of graft-versus-host disease and graft-versus- leukemia activity. Blood. 119:5088–103. DOI: 10.1182/blood-2011-11-364091. PMID: 22403259. PMCID: PMC3369606.
60. Tian Y, Meng L, Wang Y, et al. 2021; Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction. J Clin Invest. 131:e136774. DOI: 10.1172/JCI136774. PMID: 33090973. PMCID: PMC7773406.
Article
61. Liang W, Chen X, Zhang S, et al. 2021; Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett. 26:3. DOI: 10.1186/s11658-020-00246-5. PMID: 33472580. PMCID: PMC7818947. PMID: 3cdfe2a033a84edf8a509de3c0502671.
Article
62. Ringdén O, Gustafsson B, Sadeghi B. 2020; Mesenchymal stromal cells in pediatric hematopoietic cell transplantation a review and a pilot study in children treated with decidua stromal cells for acute graft-versus-host disease. Front Immunol. 11:567210. DOI: 10.3389/fimmu.2020.567210. PMID: 33193339. PMCID: PMC7604265. PMID: 012253a2f15b436799e05579532a9163.
Article
63. Phinney DG. 2012; Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem. 113:2806–12. DOI: 10.1002/jcb.24166. PMID: 22511358.
Article
64. Crippa S, Bernardo ME. 2018; Mesenchymal stromal cells: role in the BM niche and in the support of hematopoietic stem cell trans-plantation. Hemasphere. 2:e151. DOI: 10.1097/HS9.0000000000000151. PMID: 31723790. PMCID: PMC6745957. PMID: 6bfa8f1e0a8e4eb2b62cb62a4a2a55f8.
Article
65. Conrad S, Younsi A, Bauer C, Geburek F, Skutella T. Pham PV, editor. 2019. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti- inflammatory effects. Stem cell transplantation for autoimmune diseases and inflammation. Springer;Philadelphia, PA: p. 89–123. DOI: 10.1007/978-3-030-23421-8_6.
Article
66. Winer JP, Janmey PA, McCormick ME, Funaki M. 2009; Bone marrow- derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A. 15:147–54. DOI: 10.1089/ten.tea.2007.0388. PMID: 18673086.
67. Maumus M, Rozier P, Boulestreau J, Jorgensen C, Noël D. 2020; Mesenchymal stem cell-derived extracellular vesicles: opportunities and challenges for clinical translation. Front Bioeng Biotechnol. 8:997. DOI: 10.3389/fbioe.2020.00997. PMID: 33015001. PMCID: PMC7511661. PMID: e4b6b7075d9f4d198fd9c468b251587f.
Article
68. Cheung TS, Bertolino GM, Giacomini C, Bornhäuser M, Dazzi F, Galleu A. 2020; Mesenchymal stromal cells for graft versus host disease: mechanism-based biomarkers. Front Immunol. 11:1338. DOI: 10.3389/fimmu.2020.01338. PMID: 32670295. PMCID: PMC7330053. PMID: 7285e8577afd49409d7815f303b6382f.
Article
69. Vanherwegen AS, Cook DP, Ferreira GB, Gysemans C, Mathieu C. 2019; Vitamin D-modulated dendritic cells delay lethal graft-versus- ost disease through induction of regulatory T cells. J Steroid Biochem Mol Biol. 188:103–10. DOI: 10.1016/j.jsbmb.2018.12.013. PMID: 30605776.
70. Ballini A, Cantore S, Scacco S, Coletti D, Tatullo M. 2018; Mesenchymal stem cells as promoters, enhancers, and playmakers of the trans-lational regenerative medicine 2018. Stem Cells Int. 2018:927401. DOI: 10.1155/2018/6927401. PMID: 30510586. PMCID: PMC6232791. PMID: 204d0bb084f54a99be485903a5c51958.
Article
71. Charbord P. 2010; Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 21:1045–56. DOI: 10.1089/hum.2010.115. PMID: 20565251. PMCID: PMC4823383.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr