Int Neurourol J.  2022 Dec;26(4):288-298. 10.5213/inj.2244162.081.

Effects of Intravesical Electrical Stimulation on Urinary Adenosine Triphosphate and Nitric Oxide in Rats With Detrusor Underactivity Induced By Bilateral Pelvic Nerve Crush Injury: The Possible Underlying Mechanism

Affiliations
  • 1Department of Urology, China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing, China
  • 2University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
  • 3Cheeloo College of Medicine, Shandong University, Jinan, China

Abstract

Purpose
To explore the effect of intravesical electrical stimulation (IVES) on urinary adenosine triphosphate (ATP) and nitric oxide (NO) in rats with detrusor underactivity (DU) induced by bilateral pelvic nerve crush (bPNC), and to determine the underlying peripheral mechanism.
Methods
Twenty-four female Sprague-Dawley rats were equally divided into 3 groups: sham; bPNC; and IVES. Rats in the IVES group began to receive IVES treatment 10 days after bPNC (20 minutes per day for 14 consecutive days). After the 14th IVES, rat urine was collected and cystometry was performed. The serum creatinine, blood urea nitrogen, and urinary ATP and NO levels were measured, and a routine urinalysis was performed.
Results
The maximum cystometric capacity (MCC), maximum changes in bladder pressure during filling (∆FP), and postvoid residual urine (PVR) in the IVES group were significantly lower than the bPNC group, and the maximum changes in bladder pressure during voiding (∆VP) was significantly higher than the bPNC group. Compared with the sham group, the MCC, ∆FP and PVR were significantly increased, and the maximum voiding pressure (MVP) and ∆VP were significantly decreased in the bPNC group. After bPNC, urinary ATP was significantly decreased, and urinary NO was significantly increased. In IVES-treated rats, urinary ATP was significantly higher than the bPNC group, and NO was significantly lower than the bPNC group. In addition, the ATP-to-NO ratio of the rats in the bPNC group was significantly lower than the sham and IVES groups. Correlation analysis showed that the ATP and NO were not correlated with the MCC, ∆FP, MVP, ∆VP, and PVR.
Conclusions
Promoting the release of urothelial ATP and inhibiting the release of urothelial NO may be one of the peripheral mechanisms underlying IVES in the treatment of DU. Specifically, IVES may shift the balance between excitation and inhibition toward excitation.

Keyword

Urinary Bladder, Underactive; Intravesical electrical stimulation; Bilateral pelvic nerve crush; Adenosine triphosphate; Nitric oxide
Full Text Links
  • INJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr