Korean J Physiol Pharmacol.  2022 Jan;26(1):47-57. 10.4196/kjpp.2022.26.1.47.

Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus

Affiliations
  • 1Department of Emergency Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24289, Korea
  • 2Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
  • 3Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
  • 4Department of Emergency Medicine, Dankook University Hospital, Dankook University College of Medicine, Cheonan 31116, Korea
  • 5Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, GangnungWonju National University, Gangneung 25457, Korea
  • 6Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea
  • 7Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea

Abstract

Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

Keyword

Blood-brain barrier; Brain ischemia; Hippocampus; Neuroprotection; Stiripentol

Figure

  • Fig. 1 Experimental timeline. Vehicle (saline) and STP (10, 15, and 20 mg/kg) are treated 30 min after TFI. 8-ARMT is conducted at 3, 2, and 1 day before TFI, and 1, 2, 3, 4, and 5 days after TFI. PAT is carried out at 1 day before, and 5 days after TFI. The animals are sacrificed at 6 h, 2 and 5 days after TFI respectively, and histologically analyzed. STP, stiripentol; TFI, transient forebrain ischemia; 8-ARMT, 8-arm radial maze test; PAT, passive avoidance test.

  • Fig. 2 Latency time in PAT (A) and mean numbers of errors in 8-ARMT (B) in the Sham-vehicle, Sham-STP (10, 15, and 20 mg/kg), TFI-vehicle and TFI-STP (10, 15, and 20 mg/kg) groups before and after TFI. The substantial trials for PAT are conducted one day before and five days after TFI and gerbils are undergone pre-training trial at 20 min before each substantial trial. In the TFI-20 mg/kg STP group, a significantly delayed latency time in PAT is recorded compared with that in the TFI-vehicle, TFI-10 mg/kg STP and TFI-15 mg/kg STP groups. 8-ARMT is daily performed at three to one day before TFI, and one to five days after TFI. In the TFI-20 mg/kg STP group, the numbers of the errors in 8-ARMT are significantly decreased from two days after TFI. The bars indicate the means ± SEM (n = 7, respectively; *p < 0.05 vs. Sham-vehicle or Sham-STP group; #p < 0.05 vs. TFI-vehicle group). 8-ARMT, 8-arm radial maze test; PAT, passive avoidance test; STP, stiripentol; TFI, transient forebrain ischemia.

  • Fig. 3 (A–H and a–h) NeuN immunohistochemistry (A–H) and F-J B histofluorescence (a–h) in the CA1 region of the Sham-vehicle (A and a), TFI-vehicle (B and b), Sham-STP (10, 15, and 20 mg/kg) (C, c, E, e, G, and g) and TFI-STP (10, 15, and 20 mg/kg) (D, d, F, f, H, and h) groups five days after TFI. In the TFI-vehicle group, NeuN+ cells are rarely found, and F-J B+ cells are abundant in the stratum pyramidale (SP). However, in the TFI-20 mg/kg STP group, NeuN+ cells are abundant and F-J B+ cells are very few (arrows) in the SP. Scale bars = 100 μm. (I and i) The mean numbers of NeuN+ cells (I) and F-J B+ cells (i). The bars indicate the means ± SEM (n = 5 or 7, respectively; *p < 0.05 vs. Sham-vehicle or Sham-STP group; #p < 0.05 vs. TFI-vehicle group). NeuN, neuronal nuclei; F-J B, Fluoro-Jade B; CA1, cornu ammonis 1; TFI, transient forebrain ischemia; STP, stiripentol; SO, stratum oriens; SR, stratum radiatum.

  • Fig. 4 (A) GFAP immunohistochemistry in the CA1 region of the Sham-vehicle (a), TFI-vehicle (b–d), Sham-20 mg/kg STP (e) and TFI-20 mg/kg STP (f–h) groups six hours (b and f), two days (c and g) and five days (d and h) after TFI. In the TFI-vehicle group, GFAP+ astrocytes become gradually hypertrophied after TFI, showing that the ends of the astrocytes are blunt (arrow) five days after TFI. In contrast, the hypertrophy of GFAP+ astrocytes is apparently attenuated in the TFI-20 mg/kg STP group. Scale bars = 100 μm. (B) ROD of GFAP immunoreactive structures. The bars indicate the means ± SEM (n = 5 or 7, respectively; *p < 0.05 vs. Sham-vehicle or Sham-STP group; #p < 0.05 vs. TFI-vehicle group). GFAP, glial fibrillary acidic protein; CA1, cornu ammonis 1; TFI, transient forebrain ischemia; STP, stiripentol; ROD, relative optical density; SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.

  • Fig. 5 Double immunohistofluorescence for GFAP (green) and GLUT-1 (red) in the CA1 region of the Sham-vehicle (A), TFI-vehicle (B–D), Sham-20 mg/kg STP (E) and TFI-20 mg/kg STP (F–H) groups six hours (B and F), two days (C and G) and five days (D and H) after TFI. GFAP+ AEF (arrows in A) are contact with GLUT-1+ endothelial cells in the Sham-vehicle group; however, in the TFI-vehicle group, AEF disappear gradually (arrows in B–D). In contrast, GFAP+ AEF (arrows in F–H) are well co-localized with GLUT-1+ endothelial cells in the TFI-20 mg/kg STP group. Scale bars = 50 μm. GFAP, glial fibrillary acidic protein; GLUT-1, glucose transporter 1; CA1, cornu ammonis 1; TFI, transient forebrain ischemia; STP, stiripentol; AEF, astrocyte endfeet; SP, stratum pyramidale; SR, stratum radiatum.

  • Fig. 6 (A) IgG immunohistochemistry in the CA1 region of the Sham-vehicle (a), TFI-vehicle (b–d), Sham-20 mg/kg STP (e) and TFI-20 mg/kg STP (f–h) groups six hours (b and f), two days (c and g) and five days (d and h) after TFI. In the Sham-vehicle-group, IgG immunoreactivity is shown only within blood vessels (arrow). In the TFI-vehicle-group, IgG immunoreactivity is increased in cellular components (arrowheads) and parenchyma from six hours after TFI. In contrast, IgG immunoreactivity in the TFI-20 mg/kg STP group is apparently decreased. Scale bars = 100 μm. (B) ROD of IgG immunoreactive structures. The bars indicate the means ± SEM (n = 5 or 7, respectively; *p < 0.05 vs. Sham-vehicle or Sham-STP group; #p < 0.05 vs. TFI-vehicle group). IgG, immunoglobulin G; CA1, cornu ammonis 1; TFI, transient forebrain ischemia; STP, stiripentol; ROD, relative optical density; SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.


Reference

1. Kirino T, Sano K. 1984; Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol. 62:201–208. DOI: 10.1007/BF00691853. PMID: 6695554.
Article
2. Lee TK, Kim H, Song M, Lee JC, Park JH, Ahn JH, Yang GE, Kim H, Ohk TG, Shin MC, Cho JH, Won MH. 2019; Time-course pattern of neuronal loss and gliosis in gerbil hippocampi following mild, severe, or lethal transient global cerebral ischemia. Neural Regen Res. 14:1394–1403. DOI: 10.4103/1673-5374.253524. PMID: 30964065. PMCID: PMC6524495.
Article
3. Kirino T. 1982; Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239:57–69. DOI: 10.1016/0006-8993(82)90833-2. PMID: 7093691.
Article
4. Lee TK, Kang IJ, Kim B, Sim HJ, Kim DW, Ahn JH, Lee JC, Ryoo S, Shin MC, Cho JH, Kim YM, Park JH, Choi SY, Won MH. 2020; Experimental pretreatment with chlorogenic acid prevents transient ischemia-induced cognitive decline and neuronal damage in the hippocampus through anti-oxidative and anti-inflammatory effects. Molecules. 25:3578. DOI: 10.3390/molecules25163578. PMID: 32781658. PMCID: PMC7463954.
Article
5. Park JH, Kim YH, Ahn JH, Choi SY, Hong S, Kim SK, Kang IJ, Kim YM, Lee TK, Won MH, Lee CH. 2017; Atomoxetine protects against NMDA receptor-mediated hippocampal neuronal death following transient global cerebral ischemia. Curr Neurovasc Res. 14:158–168. DOI: 10.2174/1567202614666170328094042. PMID: 28356001.
Article
6. Puyal J, Ginet V, Clarke PG. 2013; Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol. 105:24–48. DOI: 10.1016/j.pneurobio.2013.03.002. PMID: 23567504.
Article
7. Farhadi Moghadam B, Fereidoni M. 2020; Neuroprotective effect of menaquinone-4 (MK-4) on transient global cerebral ischemia/reperfusion injury in rat. PLoS One. 15:e0229769. DOI: 10.1371/journal.pone.0229769. PMID: 32150581. PMCID: PMC7062268.
Article
8. Victoria ECG, Toscano ECB, Oliveira FMS, de Carvalho BA, Caliari MV, Teixeira AL, de Miranda AS, Rachid MA. 2020; Up-regulation of brain cytokines and metalloproteinases 1 and 2 contributes to neurological deficit and brain damage in transient ischemic stroke. Microvasc Res. 129:103973. DOI: 10.1016/j.mvr.2019.103973. PMID: 31891716.
Article
9. Ju F, Ran Y, Zhu L, Cheng X, Gao H, Xi X, Yang Z, Zhang S. 2018; Increased BBB permeability enhances activation of microglia and exacerbates loss of dendritic spines after transient global cerebral ischemia. Front Cell Neurosci. 12:236. DOI: 10.3389/fncel.2018.00236. PMID: 30123113. PMCID: PMC6085918.
Article
10. Kho AR, Choi BY, Lee SH, Hong DK, Lee SH, Jeong JH, Park KH, Song HK, Choi HC, Suh SW. 2018; Effects of protocatechuic acid (PCA) on global cerebral ischemia-induced hippocampal neuronal death. Int J Mol Sci. 19:1420. DOI: 10.3390/ijms19051420. PMID: 29747437. PMCID: PMC5983751.
Article
11. Kondo T, Yoshida S, Nagai H, Takeshita A, Mino M, Morioka H, Nakajima T, Kusakabe KT, Okada T. 2018; Transient forebrain ischemia induces impairment in cognitive performance prior to extensive neuronal cell death in Mongolian gerbil (Meriones unguiculatus). J Vet Sci. 19:505–511. DOI: 10.4142/jvs.2018.19.4.505. PMID: 29695143. PMCID: PMC6070588.
12. Lee TK, Kang IJ, Sim H, Lee JC, Ahn JH, Kim DW, Park JH, Lee CH, Kim JD, Won MH, Choi SY. 2021; Therapeutic effects of decursin and Angelica gigas Nakai root extract in gerbil brain after transient ischemia via protecting BBB leakage and astrocyte endfeet damage. Molecules. 26:2161. DOI: 10.3390/molecules26082161. PMID: 33918660. PMCID: PMC8069195.
13. Inoue Y, Ohtsuka Y. STP-1 Study Group. 2014; Effectiveness of add-on stiripentol to clobazam and valproate in Japanese patients with Dravet syndrome: additional supportive evidence. Epilepsy Res. 108:725–731. DOI: 10.1016/j.eplepsyres.2014.02.008. PMID: 24630050.
Article
14. Fisher JL. 2011; The effects of stiripentol on GABA(A) receptors. Epilepsia. 52 Suppl 2:76–78. DOI: 10.1111/j.1528-1167.2011.03008.x. PMID: 21463286. PMCID: PMC3652007.
Article
15. Nickels KC, Wirrell EC. 2017; Stiripentol in the management of epilepsy. CNS Drugs. 31:405–416. DOI: 10.1007/s40263-017-0432-1. PMID: 28434133.
Article
16. Auvin S, Lecointe C, Dupuis N, Desnous B, Lebon S, Gressens P, Dournaud P. 2013; Stiripentol exhibits higher anticonvulsant properties in the immature than in the mature rat brain. Epilepsia. 54:2082–2090. DOI: 10.1111/epi.12401. PMID: 24117113.
Article
17. Shen DD, Levy RH, Moor MJ, Savitch JL. 1990; Efficacy of stiripentol in the intravenous pentylenetetrazol infusion seizure model in the rat. Epilepsy Res. 7:40–48. DOI: 10.1016/0920-1211(90)90052-W. PMID: 2292245.
Article
18. Trojnar MK, Wojtal K, Trojnar MP, Czuczwar SJ. 2005; Stiripentol. A novel antiepileptic drug. Pharmacol Rep. 57:154–160. PMID: 15886413.
19. Fujiwara A, Nakao K, Ueno T, Matsumura S, Ito S, Minami T. 2020; Stiripentol alleviates neuropathic pain in L5 spinal nerve-transected mice. J Anesth. 34:373–381. DOI: 10.1007/s00540-020-02762-2. PMID: 32189128.
Article
20. Jarrott DM, Domer FR. 1980; A gerbil model of cerebral ischemia suitable for drug evaluation. Stroke. 11:203–209. DOI: 10.1161/01.STR.11.2.203. PMID: 6989034.
Article
21. Bae EJ, Chen BH, Yan BC, Shin BN, Cho JH, Kim IH, Ahn JH, Lee JC, Tae HJ, Hong S, Kim DW, Cho JH, Lee YL, Won MH, Park JH. 2015; Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus. Neural Regen Res. 10:944–950. DOI: 10.4103/1673-5374.158359. PMID: 26199612. PMCID: PMC4498357.
Article
22. Chen BH, Park JH, Lee YL, Kang IJ, Kim DW, Hwang IK, Lee CH, Yan BC, Kim YM, Lee TK, Lee JC, Won MH, Ahn JH. 2018; Melatonin improves vascular cognitive impairment induced by ischemic stroke by remyelination via activation of ERK1/2 signaling and restoration of glutamatergic synapses in the gerbil hippocampus. Biomed Pharmacother. 108:687–697. DOI: 10.1016/j.biopha.2018.09.077. PMID: 30245469.
Article
23. Radtke-Schuller S, Schuller G, Angenstein F, Grosser OS, Goldschmidt J, Budinger E. 2016; Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct. 221 Suppl 1:1–272. DOI: 10.1007/s00429-016-1259-0. PMID: 27507296. PMCID: PMC5005445.
Article
24. Sharma SS, Dhar A, Kaundal RK. 2007; FeTPPS protects against global cerebral ischemic-reperfusion injury in gerbils. Pharmacol Res. 55:335–342. DOI: 10.1016/j.phrs.2007.01.002. PMID: 17292620.
Article
25. Meurer RT, Martins DT, Hilbig A, Ribeiro Mde C, Roehe AV, Barbosa-Coutinho LM, Fernandes Mda C. 2008; Immunohistochemical expression of markers Ki-67, neun, synaptophysin, p53 and HER2 in medulloblastoma and its correlation with clinicopathological parameters. Arq Neuropsiquiatr. 66(2B):385–390. DOI: 10.1590/S0004-282X2008000300020. PMID: 18641877.
Article
26. Schmued LC, Hopkins KJ. 2000; Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 874:123–130. DOI: 10.1016/S0006-8993(00)02513-0. PMID: 10960596.
Article
27. Block F, Schwarz M. 1997; Correlation between hippocampal neuronal damage and spatial learning deficit due to global ischemia. Pharmacol Biochem Behav. 56:755–761. DOI: 10.1016/S0091-3057(96)00484-4. PMID: 9130303.
Article
28. Pegorini S, Braida D, Verzoni C, Guerini-Rocco C, Consalez GG, Croci L, Sala M. 2005; Capsaicin exhibits neuroprotective effects in a model of transient global cerebral ischemia in Mongolian gerbils. Br J Pharmacol. 144:727–735. DOI: 10.1038/sj.bjp.0706115. PMID: 15678080. PMCID: PMC1576053.
Article
29. Verleye M, Buttigieg D, Steinschneider R. 2016; Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels. J Neurosci Res. 94:179–189. DOI: 10.1002/jnr.23688. PMID: 26511438.
Article
30. Chatterjee T, Das G, Chatterjee BK, Dhar J, Ghosh S, Chakrabarti P. 2020; The role of isoaspartate in fibrillation and its prevention by Protein-L-isoaspartyl methyltransferase. Biochim Biophys Acta Gen Subj. 1864:129500. DOI: 10.1016/j.bbagen.2019.129500. PMID: 31785325.
Article
31. Horner PJ, Palmer TD. 2003; New roles for astrocytes: the nightlife of an 'astrocyte'. La vida loca! Trends Neurosci. 26:597–603. DOI: 10.1016/j.tins.2003.09.010. PMID: 14585599.
Article
32. Daneman R, Prat A. 2015; The blood-brain barrier. Cold Spring Harb Perspect Biol. 7:a020412. DOI: 10.1101/cshperspect.a020412. PMID: 25561720. PMCID: PMC4292164.
Article
33. Harukuni I, Bhardwaj A. 2006; Mechanisms of brain injury after global cerebral ischemia. Neurol Clin. 24:1–21. DOI: 10.1016/j.ncl.2005.10.004. PMID: 16443127.
Article
34. Anderson MF, Blomstrand F, Blomstrand C, Eriksson PS, Nilsson M. 2003; Astrocytes and stroke: networking for survival? Neurochem Res. 28:293–305. DOI: 10.1023/A:1022385402197. PMID: 12608702.
Article
35. Bylicky MA, Mueller GP, Day RM. 2018; Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev. 2018:6501031. DOI: 10.1155/2018/6501031. PMID: 29805731. PMCID: PMC5901819.
Article
36. Liu Z, Chopp M. 2016; Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 144:103–120. DOI: 10.1016/j.pneurobio.2015.09.008. PMID: 26455456. PMCID: PMC4826643.
Article
37. Park JH, Kim DW, Lee TK, Park CW, Park YE, Ahn JH, Lee HA, Won MH, Lee CH. 2019; Improved HCN channels in pyramidal neurons and their new expression levels in pericytes and astrocytes in the gerbil hippocampal CA1 subfield following transient ischemia. Int J Mol Med. 44:1801–1810. DOI: 10.3892/ijmm.2019.4353. PMID: 31573045. PMCID: PMC6777693.
Article
38. Lee TK, Ahn JH, Park CW, Kim B, Park YE, Lee JC, Park JH, Yang GE, Shin MC, Cho JH, Kang IJ, Won MH. 2020; Pre-treatment with laminarin protects hippocampal CA1 pyramidal neurons and attenuates reactive gliosis following transient forebrain ischemia in gerbils. Mar Drugs. 18:52. DOI: 10.3390/md18010052. PMID: 31940961. PMCID: PMC7024340.
Article
39. Lee TK, Lee JC, Kim JD, Kim DW, Ahn JH, Park JH, Kim HI, Cho JH, Choi SY, Won MH, Kang IJ. 2021; Populus tomentiglandulosa extract is rich in polyphenols and protects neurons, astrocytes, and the blood-brain barrier in gerbil striatum following ischemia-reperfusion injury. Molecules. 26:5430. DOI: 10.3390/molecules26185430. PMID: 34576901. PMCID: PMC8471727.
40. Kim H, Park JH, Shin MC, Cho JH, Lee TK, Kim H, Song M, Park CW, Park YE, Lee JC, Ryoo S, Kim YM, Kim DW, Hwang IK, Choi SY, Won MH, Ahn JH. 2019; Fate of astrocytes in the gerbil hippocampus after transient global cerebral ischemia. Int J Mol Sci. 20:845. DOI: 10.3390/ijms20040845. PMID: 30781368. PMCID: PMC6412566.
Article
41. Sofroniew MV, Vinters HV. 2010; Astrocytes: biology and pathology. Acta Neuropathol. 119:7–35. DOI: 10.1007/s00401-009-0619-8. PMID: 20012068. PMCID: PMC2799634.
Article
42. Abbott NJ. 2002; Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 200:629–638. DOI: 10.1046/j.1469-7580.2002.00064.x. PMID: 12162730. PMCID: PMC1570746.
Article
43. Huang Y, Chen S, Luo Y, Han Z. 2020; Crosstalk between Inflammation and the BBB in Stroke. Curr Neuropharmacol. 18:1227–1236. DOI: 10.2174/1570159X18666200620230321. PMID: 32562523. PMCID: PMC7770647.
Article
44. Wang Z, Leng Y, Tsai LK, Leeds P, Chuang DM. 2011; Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab. 31:52–57. DOI: 10.1038/jcbfm.2010.195. PMID: 20978517. PMCID: PMC3049473.
Article
45. Zhang H, Park JH, Maharjan S, Park JA, Choi KS, Park H, Jeong Y, Ahn JH, Kim IH, Lee JC, Cho JH, Lee IK, Lee CH, Hwang IK, Kim YM, Suh YG, Won MH, Kwon YG. 2017; Sac-1004, a vascular leakage blocker, reduces cerebral ischemia-reperfusion injury by suppressing blood-brain barrier disruption and inflammation. J Neuroinflammation. 14:122. DOI: 10.1186/s12974-017-0897-3. PMID: 28645333. PMCID: PMC5481915.
Article
46. Lin CY, Chang C, Cheung WM, Lin MH, Chen JJ, Hsu CY, Chen JH, Lin TN. 2008; Dynamic changes in vascular permeability, cerebral blood volume, vascular density, and size after transient focal cerebral ischemia in rats: evaluation with contrast-enhanced magnetic resonance imaging. J Cereb Blood Flow Metab. 28:1491–1501. DOI: 10.1038/jcbfm.2008.42. PMID: 18478021.
Article
47. Ma F, Sun P, Zhang X, Hamblin MH, Yin KJ. 2020; Endothelium-targeted deletion of the miR-15a/16-1 cluster ameliorates blood-brain barrier dysfunction in ischemic stroke. Sci Signal. 13:eaay5686. DOI: 10.1126/scisignal.aay5686. PMID: 32265338. PMCID: PMC7173187.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr