Korean J Physiol Pharmacol.  2021 May;25(3):189-195. 10.4196/kjpp.2021.25.3.189.

Fluoxetine affects cytosolic cAMP, ATP, Ca2+ responses to forskolin, and survival of human ovarian granulosa tumor COV434 cells

Affiliations
  • 1Physiologie de la Reproduction & des Comportements Laboratory, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique & Environnementale (INRAe), University of Tours, Nouzilly 37380, France
  • 2Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 820000, Vietnam

Abstract

Fluoxetine (FLX), a selective serotonin reuptake inhibitor antidepressant, exhibits various other mechanisms of action in numerous cell types and has been shown to induce cell death in cancer cells, paving the way for its potential use in cancer therapy. The aim of this study was to determine the off-target effects of the anti-depressant drug FLX, on the human ovarian granulosa tumor COV434 cells stimulated by forskolin (FSK), by measuring the real-time kinetics of intracellular cyclic AMP (cAMP), ATP level, cytoplasmic calcium ([Ca 2+ ] cyt ) and survival of COV434 cells. We show that incubating COV434 cells with FLX (between 0.6 and 10 ㎛) induces a decrease in intracellular cAMP response to FSK, a drop in ATP content and stimulates cytoplasmic Ca 2+ accumulation in COV434 cells. Only the highest concentrations of FLX (5–10 ㎛) diminished cell viability. The present report is the first to identify an action mechanism of FLX in human tumor ovarian cells COV434 cells and thus opening the way to potential use of fluoxetine as a complementary tool, in granulosa tumor treatments.

Keyword

Cyclic AMP; Fluoxetine; Forskolin; Ovary; Tumor

Figure

  • Fig. 1 Effect of fluoxetine (FLX) on intracellular cAMP response of COV434 cells to 10 µM forskolin (FSK). Cells were treated with the indicated concentrations of fluoxetine for 2 h (A, B) or 24 h (C, D). (A, C) Real-time recording of luminescence under stimulation of COV434 cells by 10 µM FSK in the presence of fluoxetine; (B, D) Dose-dependent response to fluoxetine determined by the area under curve (AUC) of individual kinetics in (A, C). Different letters (a–e) in each incubation time indicate significant differences between control and treatment at p < 0.05.

  • Fig. 2 Effect of fluoxetine (FLX) on ATP levels in COV434 cells and the number of viable COV434 cells. ATP level (A) and the viability of COV434 cells (B) were measured after incubation with various concentrations of FLX for 2 h or 24 h. The experiments were repeated four times; values are mean ± SEM. Different letters (a–e) in each incubation time indicate significant differences between control and treatment at p < 0.05.

  • Fig. 3 Effect of fluoxetine (FLX) on [Ca2+]cyt in Fluo4-AM-loaded COV434 cells. Cells were incubated with Fluo4-AM as described in experimental procedures. The intracellular Ca2+ levels were measured spectrofluorimetry using an excitation wavelength of 494 nm and an emission wavelength of 516 nm. The [Ca2+]cyt measurements were made every 52 sec. (A) Baseline levels of [Ca2+]cyt were monitored for 156 sec prior to adding Ca2+ at 2 mM final concentration, changes in [Ca2+]cyt were monitored for an additional 800 sec. (B) Dose-dependent response to fluoxetine determined by the area under curve (AUC) of individual kinetics in (A). (C) Signal of Ca2+ responses induced by FLX (10 µM) in a Ca2+-free medium and Control (Ctrl) (absence of FLX). (D) Cells loaded with Fluo4-AM were incubated first with 10 µM FLX in Ca2+-free medium, and external Ca2+ was added after 1,000 sec. Asterisks in each concentration indicate significant differences between control and treatment at p < 0.05.


Reference

1. Wong DT, Bymaster FP, Engleman EA. 1995; Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci. 57:411–441. DOI: 10.1016/0024-3205(95)00209-O. PMID: 7623609.
Article
2. Stark P, Fuller RW, Wong DT. 1985; The pharmacologic profile of fluoxetine. J Clin Psychiatry. 46(3 Pt 2):7–13. PMID: 3871767.
3. Fuller RW, Wong DT, Robertson DW. 1991; Fluoxetine, a selective inhibitor of serotonin uptake. Med Res Rev. 11:17–34. DOI: 10.1002/med.2610110103. PMID: 1994152.
Article
4. Pancrazio JJ, Kamatchi GL, Roscoe AK, Lynch C 3rd. 1998; Inhibition of neuronal Na+ channels by antidepressant drugs. J Pharmacol Exp Ther. 284:208–214. PMID: 9435180.
5. Deák F, Lasztóczi B, Pacher P, Petheö GL, Kecskeméti V, Spät A. 2000; Inhibition of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells. Neuropharmacology. 39:1029–1036. DOI: 10.1016/S0028-3908(99)00206-3. PMID: 10727713.
Article
6. Mukherjee J, Das MK, Yang ZY, Lew R. 1998; Evaluation of the binding of the radiolabeled antidepressant drug, 18F-fluoxetine in the rodent brain: an in vitro and in vivo study. Nucl Med Biol. 25:605–610. DOI: 10.1016/S0969-8051(98)00043-2. PMID: 9804041.
Article
7. Francis SH, Corbin JD. 1994; Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol. 56:237–272. DOI: 10.1146/annurev.ph.56.030194.001321. PMID: 8010741.
Article
8. Maurice DH, Palmer D, Tilley DG, Dunkerley HA, Netherton SJ, Raymond DR, Elbatarny HS, Jimmo SL. 2003; Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol. 64:533–546. DOI: 10.1124/mol.64.3.533. PMID: 12920188.
Article
9. Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, Perraud AL, Cambier JC, Lenz LL. 2011; MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J Immunol. 187:2595–2601. DOI: 10.4049/jimmunol.1100088. PMID: 21813776. PMCID: PMC3159690.
Article
10. Berridge MJ, Bootman MD, Roderick HL. 2003; Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 4:517–529. DOI: 10.1038/nrm1155. PMID: 12838335.
Article
11. Berridge MJ, Lipp P, Bootman MD. 2000; The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 1:11–21. DOI: 10.1038/35036035. PMID: 11413485.
Article
12. Carafoli E, Santella L, Branca D, Brini M. 2001; Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 36:107–260. DOI: 10.1080/20014091074183. PMID: 11370791.
Article
13. Duchen MR. 1999; Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol. 516(Pt 1):1–17. DOI: 10.1111/j.1469-7793.1999.001aa.x. PMID: 10066918. PMCID: PMC2269224.
Article
14. Duchen MR. 2000; Mitochondria and calcium: from cell signalling to cell death. J Physiol. 529(Pt 1):57–68. DOI: 10.1111/j.1469-7793.2000.00057.x. PMID: 11080251. PMCID: PMC2270168.
Article
15. Nguyen TMD, Klett D, Filliatreau L, Combarnous Y. 2019; Inhibition by fluoxetine of LH-stimulated cyclic AMP synthesis in tumor Leydig cells partly involves AMPK activation. PLoS One. 14:e0217519. DOI: 10.1371/journal.pone.0217519. PMID: 31163038. PMCID: PMC6548379.
Article
16. Zhang H, Vollmer M, De Geyter M, Litzistorf Y, Ladewig A, Dürrenberger M, Guggenheim R, Miny P, Holzgreve W, De Geyter C. 2000; Characterization of an immortalized human granulosa cell line (COV434). Mol Hum Reprod. 6:146–153. DOI: 10.1093/molehr/6.2.146. PMID: 10655456.
Article
17. Curti C, Mingatto FE, Polizello AC, Galastri LO, Uyemura SA, Santos AC. 1999; Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem. 199:103–109. DOI: 10.1023/A:1006912010550. PMID: 10544958.
18. Gincel D, Zaid H, Shoshan-Barmatz V. 2001; Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J. 358(Pt 1):147–155. DOI: 10.1042/bj3580147. PMCID: PMC1222042. PMID: 11485562.
Article
19. Rostovtseva T, Colombini M. 1997; VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J. 72:1954–1962. DOI: 10.1016/S0006-3495(97)78841-6. PMID: 9129800. PMCID: PMC1184392.
Article
20. Hodge T, Colombini M. 1997; Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol. 157:271–279. DOI: 10.1007/s002329900235. PMID: 9178614.
Article
21. Shoshan-Barmatz V, Gincel D. 2003; The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys. 39:279–292. DOI: 10.1385/CBB:39:3:279. PMID: 14716081.
Article
22. Nahon E, Israelson A, Abu-Hamad S, Varda SB. 2005; Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett. 579:5105–5110. DOI: 10.1016/j.febslet.2005.08.020. PMID: 16139271.
Article
23. Charles E, Hammadi M, Kischel P, Delcroix V, Demaurex N, Castelbou C, Vacher AM, Devin A, Ducret T, Nunes P, Vacher P. 2017; The antidepressant fluoxetine induces necrosis by energy depletion and mitochondrial calcium overload. Oncotarget. 8:3181–3196. DOI: 10.18632/oncotarget.13689. PMID: 27911858. PMCID: PMC5356874.
Article
24. Costa-Junior HM, Mendes AN, Davis GH, da Cruz CM, Ventura AL, Serezani CH, Faccioli LH, Nomizo A, Freire-de-Lima CG, Bisaggio Rda C, Persechini PM. 2009; ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat. 88:51–61. DOI: 10.1016/j.prostaglandins.2008.09.004. PMID: 18984060.
25. Sakanashi Y, Oyama TM, Matsuo Y, Oyama TB, Nishimura Y, Ishida S, Imai S, Okano Y, Oyama Y. 2009; Zn2+, derived from cell preparation, partly attenuates Ca2+-dependent cell death induced by A23187, calcium ionophore, in rat thymocytes. Toxicol In Vitro. 23:338–345. DOI: 10.1016/j.tiv.2008.12.006. PMID: 19124067.
26. Kannen V, Hintzsche H, Zanette DL, Silva WA Jr, Garcia SB, Waaga-Gasser AM, Stopper H. 2012; Antiproliferative effects of fluoxetine on colon cancer cells and in a colonic carcinogen mouse model. PLoS One. 7:e50043. DOI: 10.1371/journal.pone.0050043. PMID: 23209640. PMCID: PMC3507893.
Article
27. Cloonan SM, Williams DC. 2011; The antidepressants maprotiline and fluoxetine induce Type II autophagic cell death in drug-resistant Burkitt's lymphoma. Int J Cancer. 128:1712–1723. DOI: 10.1002/ijc.25477. PMID: 20503272.
Article
28. Lee CS, Kim YJ, Jang ER, Kim W, Myung SC. 2010; Fluoxetine induces apoptosis in ovarian carcinoma cell line OVCAR-3 through reactive oxygen species-dependent activation of nuclear factor-kappaB. Basic Clin Pharmacol Toxicol. 106:446–453. DOI: 10.1111/j.1742-7843.2009.00509.x. PMID: 20050848.
29. Brambilla P, Cipriani A, Hotopf M, Barbui C. 2005; Side-effect profile of fluoxetine in comparison with other SSRIs, tricyclic and newer antidepressants: a meta-analysis of clinical trial data. Pharmacopsychiatry. 38:69–77. DOI: 10.1055/s-2005-837806. PMID: 15744630.
Article
30. Tarasov AI, Griffiths EJ, Rutter GA. 2012; Regulation of ATP production by mitochondrial Ca2+. Cell Calcium. 52:28–35. DOI: 10.1016/j.ceca.2012.03.003. PMID: 22502861. PMCID: PMC3396849.
31. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P. 2009; Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta. 1787:1342–1351. DOI: 10.1016/j.bbabio.2009.03.015. PMID: 19341702. PMCID: PMC2730423.
32. Spät A, Szanda G, Csordás G, Hajnóczky G. 2008; High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium. 44:51–63. DOI: 10.1016/j.ceca.2007.11.015. PMID: 18242694. PMCID: PMC2662195.
Article
33. Rasola A, Bernardi P. 2011; Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium. 50:222–233. DOI: 10.1016/j.ceca.2011.04.007. PMID: 21601280.
34. Rasola A, Sciacovelli M, Pantic B, Bernardi P. 2010; Signal transduction to the permeability transition pore. FEBS Lett. 584:1989–1996. DOI: 10.1016/j.febslet.2010.02.022. PMID: 20153328. PMCID: PMC2866765.
Article
35. Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P. 1997; Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 185:1481–1486. DOI: 10.1084/jem.185.8.1481. PMID: 9126928. PMCID: PMC2196283.
Article
36. Bernardi P, Rasola A. 2007; Calcium and cell death: the mitochondrial connection. Subcell Biochem. 45:481–506. DOI: 10.1007/978-1-4020-6191-2_18. PMID: 18193649.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr