Lab Med Online.  2020 Oct;10(4):334-339. 10.47429/lmo.2020.10.4.334.

The Usefulness of Flow Cytometry for Measuring Phosphorylated Signal Transducer and Activator of Transcription 1 to Diagnose and Manage Chronic Mucocutaneous Candidiasis: A Case Report

Affiliations
  • 1Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 2Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
  • 3Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Abstract

Autosomal dominant chronic mucocutaneous candidiasis (AD-CMC) is a subtype of CMC caused by gain-of-function (GOF) mutation of the signal transducer and the activator of transcription 1 (STAT1) protein. GOF mutation of STAT1 disrupts Th17 cell differentiation and causes susceptibility to candida infection in mucous membranes. Although genetic testing is crucial to diagnose AD-CMC, a simple and fast diagnostic tool is required for the management and reduction of complications associated with infection. Flow cytometry (FCM) is suggested for the measurement of intracellular phosphorylated STAT1 (pSTAT1) in a stimulated status. Here, we report the application of FCM to show the activation status of STAT signaling in a 24-year-old female patient diagnosed with AD-CMC. Compared to the controls, the patient’s T cells showed increased levels of pSTAT1 after stimulation by interferon-γ and lesser extent of inhibition caused by an inhibitor. To the best of our knowledge, this is the first evaluation of the usefulness of FCM as an alternative diagnostic and monitoring tool of GOF STAT1 in Korea.


Figure

  • Fig. 1 (A) Pathophysiology of the GOF STAT1 mutation and (B) mucocutaneous candidiasis in the 24-year-old female patient (oral thrush (a), candidiasis of the nasal skin (b), and a fingernail (c)).

  • Fig. 2 (A) Expression of pSTAT1 (%) stimulated by IFN-γ and (B) reduction rate of pSTAT1 when treated with ruxolitinib (10 μM, 50 μM, 100 μM, and 250 μM) in the patient in comparison with healthy controls (N=2).

  • Fig. 3 Comparison of the STAT1 phosphorylation and the degree of inhibition stimulated by IFN-γ without or with the presence of 100 μM ruxolitinib between normal controls (N = 2) and the patient.


Reference

1. van de Veerdonk FL, Netea MG. 2016; Treatment options for chronic mucocutaneous candidiasis. J Infect. 72:S56–60. DOI: 10.1016/j.jinf.2016.04.023. PMID: 27161991. PMCID: PMC7021088.
Article
2. van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen C, et al. 2011; STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 365:54–61. DOI: 10.1056/NEJMoa1100102. PMID: 21714643.
3. Shuai K, Liu B. 2003; Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 3:900–11. DOI: 10.1038/nri1226. PMID: 14668806.
Article
4. Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. 2011; Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 208:1635–48. DOI: 10.1084/jem.20110958. PMID: 21727188. PMCID: PMC3149226.
5. Bitar M, Boldt A, Binder S, Borte M, Kentouche K, Borte S, et al. 2017; Flflow cytometric measurement of STAT1 and STAT3 phosphorylation in CD4+ and CD8+ T cells-clinical applications in primary immunodeficiency diagnostics. J Allergy Clin Immunol. 140:1439–41. e9. DOI: 10.1016/j.jaci.2017.05.017. PMID: 28601682.
6. Davies R, Vogelsang P, Jonsson R, Appel S. 2016; An optimized multiplex flow cytometry protocol for the analysis of intracellular signaling in peripheral blood mononuclear cells. J Immunol Methods. 436:58–63. DOI: 10.1016/j.jim.2016.06.007. PMID: 27369043.
Article
7. Huh HJ, Jhun BW, Choi SR, Kim Y-J, Yun SA, Nham E, et al. 2018; Bronchiectasis and recurrent respiratory infections with a de novo STAT1 gain-of-function variant: First case in Korea. Yonsei Med J. 59:1004–7. DOI: 10.3349/ymj.2018.59.8.1004. PMID: 30187709. PMCID: PMC6127433.
8. Smeekens SP, Plantinga TS, van de Veerdonk FL, Heinhuis B, Hoischen A, Joosten LA, et al. 2011; STAT1 hyperphosphorylation and defective IL12R/IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PLoS One. 6:e29248. DOI: 10.1371/journal.pone.0029248. PMID: 22195034. PMCID: PMC3237610.
Article
9. Boisson-Dupuis S, Kong X-F, Okada S, Cypowyj S, Puel A, Abel L, et al. 2012; Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 24:364–78. DOI: 10.1016/j.coi.2012.04.011. PMID: 22651901. PMCID: PMC3477860.
10. Bloomfield M, Kanderová V, Paračková Z, Vrabcová P, Svatoň M, Froňková E, et al. 2018; Utility of ruxolitinib in a child with chronic mucocutaneous candidiasis caused by a novel STAT1 gain-of-function mutation. J Clin Immunol. 38:589–601. DOI: 10.1007/s10875-018-0519-6. PMID: 29934865.
11. Vargas-Hernández A, Mace EM, Zimmerman O, Zerbe CS, Freeman AF, Rosenzweig S, et al. 2018; Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol. 141:2142–55. e5. DOI: 10.1016/j.jaci.2017.08.040. PMID: 29111217. PMCID: PMC5924437.
12. Weinacht KG, Charbonnier Lm, Plant A, Torgerson T, Rosenzweig S, Fleisher T, et al. 2015; Successful therapy of a patient with a novel STAT1 gain of function mutation and life-threatening cytopenias with janus kinase inhibitor ruxolitinib. Blood. 126:3434. DOI: 10.1182/blood.V126.23.3434.3434.
13. Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. 2015; Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency 2015. J Clin Immunol. 35:696–726. DOI: 10.1007/s10875-015-0201-1. PMID: 26482257. PMCID: PMC4659841.
14. Rhim JW, Kim KH, Kim DS, Kim BS, Kim JS, Kim CH, et al. 2012; Prevalence of primary immunodeficiency in Korea. J Korean Med Sci. 27:788–93. DOI: 10.3346/jkms.2012.27.7.788. PMID: 22787376. PMCID: PMC3390729.
Article
15. Rae W, Ward D, Mattocks C, Pengelly RJ, Eren E, Patel SV, et al. 2018; Clinical efficacy of a next-generation sequencing gene panel for primary immunodeficiency diagnostics. Clin Genet. 93:647–55. DOI: 10.1111/cge.13163. PMID: 29077208.
Article
16. Fleisher TA, Madkaikar M, Rosenzweig SD. 2016; Application of flow cytometry in the evaluation of primary immunodeficiencies. Indian J Pediatr. 83:444–9. DOI: 10.1007/s12098-015-2011-0. PMID: 26865168. PMCID: PMC5007620.
Article
17. Eren Akarcan S, Ulusoy Severcan E, Edeer Karaca N, Isik E, Aksu G, Migaud M, et al. 2017; Gain-of-function mutations in STAT1: A recently defined cause for chronic mucocutaneous candidiasis disease mimicking combined immunodeficiencies. Case Reports Immunol. 2017:2846928. DOI: 10.1155/2017/2846928. PMID: 29259832. PMCID: PMC5702932.
18. Vakkila J, Nieminen U, Siitonen S, Turunen U, Halme L, Nuutinen H, et al. 2008; A novel modification of a flow cytometric assay of phosphorylated STAT1 in whole blood monocytes for immunomonitoring of patients on IFN alpha regimen. Scand J Immunol. 67:95–102. DOI: 10.1111/j.1365-3083.2007.02028.x. PMID: 18028288.
Full Text Links
  • LMO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr