Int J Thyroidol.  2020 Nov;13(2):95-110. 10.11106/ijt.2020.13.2.95.

Increasing Incidence of Thyroid Carcinoma: Risk Factors and Seeking Approaches for Primary Prevention

Affiliations
  • 1The International Fund “Help for patients with radiation-induced thyroid cancer ‘Arnica’”, New York, NY, United States
  • 2Minsk, Belarus, New York Ear, Nose and Throat Institute, New York, NY, United States
  • 3Clinic and Policlinic of Nuclear Medicine, University of Wu ̈rzburg, Wu ̈rzburg, Germany

Abstract

Based on opinions published by many scientists about the increase in the incidence of thyroid cancer in many countries, this paper intends to identify research to be done on one hand with respect to reasons for this increase, the natural course of thyroid cancer and risk factors and - on the other hand - to support the clinician in primary prevention of thyroid cancer. Along with the traditionally discussed risk factors: ethnicity, heredity, sex effects/hormones, comorbidity, radiation exposure, diet (iodine), life-style (smoking), features of the natural environment, the effect of endocrine disrupters and in particular nitrates are also discussed. For the clinician, a simple approach for primary prevention of thyroid cancer is to refer the patient for a radiological examination applying ionizing radiation with exposure of the head and neck region only if the indication is justified according to the International Committee for Radiological Protection. In clinical practice, it is also important to take into account and minimize other risk factors: prevention of obesity and weight reduction, adequate treatment of various thyroid diseases, avoidance of excessive consumption of nitrates and other endocrine disruptors/ environmental pollutants. In case of a nuclear emergency, attention has to be paid for immediate withdrawal of contaminated food and drink as well as iodine thyroid blocking especially in vulnerable members of the population as children, pregnant or breastfeeding women. More research is also required to identify other reasons of the increasing incidence and predictors of aggressive vs indolent behavior of thyroid cancer to avoid unnecessary screening activity, overdiagnosis, and overtreatment.

Keyword

Thyroid carcinoma; Risk factors; Screening; Radiation; Nitrate; Prevention

Figure

  • Fig. 1 Scheme of combined effects of nitrate and radia-tion exposure on develop-ment of thyroid cancer. Based on data in Ward et al.129) and Drozd et al.130,131)

  • Fig. 2 Risk factors for thyroid cancer and corresponding preventive measures to be discussed. Based on data in Haugen et al.,1) WHO documents,3,6,143) Drozd et al.,130,131) ICRP document141) and Sinnott et al.34)


Reference

References

1. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2016; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133. DOI: 10.1089/thy.2015.0020. PMID: 26462967. PMCID: PMC4739132.
2. Grossman DC, Curry SJ, Barry MJ, Davidson KW, et al. US Preventive Services Task Force; Bibbins-Domingo K. 2017; Screening for thyroid cancer: US Preventive Services Task Force recommendation statement. JAMA. 317(18):1882–7. DOI: 10.1001/jama.2017.4011. PMID: 28492905.
3. International Agency for Research on Cancer. 2018. Thyroid health monitoring after nuclear accidents. IARC Technical Publications No. 46. IARC Publications;Lyon, France:
4. Merlo DF, Filiberti R, Kobernus M, Bartonova A, Gamulin M, Ferencic Z, et al. 2012; Cancer risk and the complexity of the interactions between environmental and host factors: HENVINET interactive diagrams as simple tools for exploring and understanding the scientific evidence. Environ Health. 11 Suppl 1:S9. DOI: 10.1186/1476-069X-11-S1-S9. PMID: 22759509. PMCID: PMC3388474.
Article
5. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. 2013; Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013:965212. DOI: 10.1155/2013/965212. PMID: 23737785. PMCID: PMC3664492.
Article
6. Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller RT. 2012. State of the science of endocrine disrupting chemicals - 2012. World Health Organization, United Nations Environment Programme (WHO-UNEP);DOI: 10.1016/j.toxlet.2012.03.020.
7. United Nations Scientific Committee on the Effects of Atomic Radiation. 2011. UNSCEAR 2008 report to the general assembly with scientific annexes. Annex D: Health effects due to radiation from the Chernobyl accident. United Nations;New York: 219.
8. Chen AY, Jemal A, Ward EM. 2009; Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer. 115(16):3801–7. DOI: 10.1002/cncr.24416. PMID: 19598221.
Article
9. Ahn HS, Welch HG. 2015; South Korea's thyroid-cancer 'epidemic'--turning the tide. N Engl J Med. 373(24):2389–90. DOI: 10.1056/NEJMc1507622. PMID: 26650173.
10. Vaccarella S, Dal Maso L, Laversanne M, Bray F, Plummer M, Franceschi S. 2015; The impact of diagnostic changes on the rise in thyroid cancer incidence: a population-based study in selected high-resource countries. Thyroid. 25(10):1127–36. DOI: 10.1089/thy.2015.0116. PMID: 26133012.
Article
11. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. 2017; Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA. 317(13):1338–48. DOI: 10.1001/jama.2017.2719. PMID: 28362912.
Article
12. Bray F, Colombet M, Mery L, Piñeros M, Znaor A, Zanetti R, et al. 2017. Cancer incidence in five continents, Vol. XI (electronic version). International Agency for Research on Cancer;Lyon, France: Available from: http://ci5.iarc.fr.
13. Qian ZJ, Jin MC, Meister KD, Megwalu UC. 2019; Pediatric thyroid cancer incidence and mortality trends in the United States, 1973-2013. JAMA Otolaryngol Head Neck Surg. 145(7):617–23. DOI: 10.1001/jamaoto.2019.0898. PMID: 31120475. PMCID: PMC6547136.
Article
14. McNally RJ, Blakey K, James PW, Gomez Pozo B, Basta NO, Hale J. 2012; Increasing incidence of thyroid cancer in Great Britain, 1976-2005: age-period-cohort analysis. Eur J Epidemiol. 27(8):615–22. DOI: 10.1007/s10654-012-9710-x. PMID: 22760704.
Article
15. Cho YY, Jang HW, Joung JY, Park SM, Jeong DJ, Kim SW, et al. 2015; Trends in thyroid cancer incidence in Korean Children (1999-2012) based on palpation and nonpalpation detection methods. Eur Thyroid J. 4(4):252–9. DOI: 10.1159/000442047. PMID: 26835429. PMCID: PMC4716412.
Article
16. Fukunaga FH, Yatani R. 1975; Geographic pathology of occult thyroid carcinomas. Cancer. 36(3):1095–9. DOI: 10.1002/1097-0142(197509)36:3<1095::AID-CNCR2820360338>3.0.CO;2-9. PMID: 1182663.
Article
17. Harach HR, Franssila KO, Wasenius VM. 1985; Occult papillary carcinoma of the thyroid. A 'normal' finding in Finland. A systematic autopsy study. Cancer. 56(3):531–8. DOI: 10.1002/1097-0142(19850801)56:3<531::AID-CNCR2820560321>3.0.CO;2-3.
Article
18. Furuya-Kanamori L, Bell KJL, Clark J, Glasziou P, Doi SAR. 2016; Prevalence of differentiated thyroid cancer in autopsy studies over six decades: a meta-analysis. J Clin Oncol. 34(30):3672–9. DOI: 10.1200/JCO.2016.67.7419. PMID: 27601555.
Article
19. Ahn HS, Kim HJ, Welch HG. 2014; Korea's thyroid-cancer 'epidemic'--screening and overdiagnosis. N Engl J Med. 371(19):1765–7. DOI: 10.1056/NEJMp1409841. PMID: 25372084.
20. Ahn HS, Kim HJ, Kim KH, Lee YS, Han SJ, Kim Y, et al. 2016; Thyroid cancer screening in South Korea increases detection of papillary cancers with no impact on other subtypes or thyroid cancer mortality. Thyroid. 26(11):1535–40. DOI: 10.1089/thy.2016.0075. PMID: 27627550.
Article
21. Choi YM, Kim WG, Kwon H, Jeon MJ, Han M, Kim TY, et al. 2017; Changes in standardized mortality rates from thyroid cancer in Korea between 1985 and 2015: analysis of Korean national data. Cancer. 123(24):4808–14. DOI: 10.1002/cncr.30943. PMID: 28817188.
Article
22. Jeon MJ, Kim HK, Kim EH, Kim ES, Yi HS, Kim TY, et al. 2018; Decreasing disease-specific mortality of differentiated thyroid cancer in Korea: a multicenter cohort study. Thyroid. 28(9):1121–7. DOI: 10.1089/thy.2018.0159. PMID: 29897005.
Article
23. Sprague BL, Warren Andersen S, Trentham-Dietz A. 2008; Thyroid cancer incidence and socioeconomic indicators of health care access. Cancer Causes Control. 19(6):585–93. DOI: 10.1007/s10552-008-9122-0. PMID: 18240001.
Article
24. Morris LG, Sikora AG, Tosteson TD, Davies L. 2013; The increasing incidence of thyroid cancer: the influence of access to care. Thyroid. 23(7):885–91. DOI: 10.1089/thy.2013.0045. PMID: 23517343. PMCID: PMC3704124.
Article
25. Udelsman R, Zhang Y. 2014; The epidemic of thyroid cancer in the United States: the role of endocrinologists and ultrasounds. Thyroid. 24(3):472–9. DOI: 10.1089/thy.2013.0257. PMID: 23937391. PMCID: PMC3949447.
Article
26. Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, et al. 2009; Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980-2005. Cancer Epidemiol Biomarkers Prev. 18(3):784–91. DOI: 10.1158/1055-9965.EPI-08-0960. PMID: 19240234. PMCID: PMC2676561.
Article
27. Pathak KA, Leslie WD, Klonisch TC, Nason RW. 2013; The changing face of thyroid cancer in a population-based cohort. Cancer Med. 2(4):537–44. DOI: 10.1002/cam4.103. PMID: 24156026. PMCID: PMC3799288.
Article
28. Lin JS, Bowles EJA, Williams SB, Morrison CC. 2017; Screening for thyroid cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 317(18):1888–903. DOI: 10.1001/jama.2017.0562. PMID: 28492904.
29. Jung YS, Oh CM, Kim Y, Jung KW, Ryu J, Won YJ. 2018; Long-term survival of patients with thyroid cancer according to the methods of tumor detection: a nationwide cohort study in Korea. PLoS One. 13(4):e0194743. DOI: 10.1371/journal.pone.0194743. PMID: 29659584. PMCID: PMC5901988.
Article
30. Ron E, Modan B, Preston D, Alfandary E, Stovall M, Boice JD Jr. 1989; Thyroid neoplasia following low-dose radiation in childhood. Radiat Res. 120(3):516–31. DOI: 10.2307/3577801. PMID: 2594972.
Article
31. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, et al. 1995; Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 141(3):259–77. DOI: 10.2307/3579003. PMID: 7871153.
Article
32. Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, Liu Y, et al. 2005; Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet. 365(9476):2014–23. DOI: 10.1016/S0140-6736(05)66695-0. PMID: 15950715.
Article
33. 2009. Risks to the thyroid from ionizing radiation. NCRP Report No. 159. National Council on Radiation Protection and Measurement;Bethesda, MD:
34. Sinnott B, Ron E, Schneider AB. 2010; Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev. 31(5):756–73. DOI: 10.1210/er.2010-0003. PMID: 20650861. PMCID: PMC3365850.
Article
35. Shore RE, Woodard E, Hildreth N, Dvoretsky P, Hempelmann L, Pasternack B. 1985; Thyroid tumors following thymus irradiation. J Natl Cancer Inst. 74(6):1177–84. PMID: 3858590.
36. Favus MJ, Schneider AB, Stachura ME, Arnold JE, Ryo UY, Pinsky SM, et al. 1976; Thyroid cancer occurring as a late consequence of head-and-neck irradiation. Evaluation of 1056 patients. N Engl J Med. 294(19):1019–25. DOI: 10.1056/NEJM197605062941901. PMID: 1256510.
37. United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2008 Report. Sources and effects of ionizing radiation. Volume I: Sources. Report to the general assembly with scientific annexes A and B. Available from: http://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Report_Vol.I.pdf.
38. Veiga LH, Holmberg E, Anderson H, Pottern L, Sadetzki S, Adams MJ, et al. 2016; Thyroid cancer after childhood exposure to external radiation: an updated pooled analysis of 12 studies. Radiat Res. 185(5):473–84. DOI: 10.1667/RR14213.1. PMID: 27128740. PMCID: PMC4893786.
Article
39. Mettler FA Jr, Thomadsen BR, Bhargavan M, Gilley DB, Gray JE, Lipoti JA, et al. 2008; Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys. 95(5):502–7. DOI: 10.1097/01.HP.0000326333.42287.a2. PMID: 18849682.
Article
40. Mettler FA Jr, Mahesh M, Bhargavan-Chatfield M, Chambers CE, Elee JG, Frush DP, et al. 2020; Patient exposure from radiologic and nuclear medicine procedures in the United States: procedure volume and effective dose for the period 2006-2016. Radiology. 295(2):418–27. DOI: 10.1148/radiol.2020192256. PMID: 32181730.
41. 2009. Ionizing radiation exposure of the population of the United States. NCRP Report No. 160. the National Council on Radiation Protection and Measurement;Bethesda, MD:
42. das Bundesamt für Strahlenschutz. Available from: https://www.bfs.de/EN/topics/ion/radiation-protection/limit-values/limit-values_node.html. cited October 12, 2020.
43. Leswick DA, Hunt MM, Webster ST, Fladeland DA. 2008; Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. Radiology. 249(2):572–80. DOI: 10.1148/radiol.2492071430. PMID: 18780826.
Article
44. Tipnis SV, Spampinato MV, Hungerford J, Huda W. 2015; Thyroid doses and risks to adult patients undergoing neck CT examinations. AJR Am J Roentgenol. 204(5):1064–8. DOI: 10.2214/AJR.14.13102. PMID: 25905942.
Article
45. Abuzaid MM, Elshami W, Haneef C, Alyafei S. 2017; Thyroid shield during brain CT scan: dose reduction and image quality evaluation. Imaging Med. 9(3):45–8.
46. Visweswaran S, Kanagaraj K, Joseph S, Perumal V. 2018; Medical imaging: contribution toward background radiation and human exposure. J Radiat Cancer Res. 9(4):177–82. DOI: 10.4103/jrcr.jrcr_27_18.
Article
47. Dawson P, Punwani S. 2009; The thyroid dose burden in medical imaging A re-examination. Eur J Radiol. 69(1):74–9. DOI: 10.1016/j.ejrad.2007.09.028. PMID: 18068322.
48. Zhang Y, Chen Y, Huang H, Sandler J, Dai M, Ma S, et al. 2015; Diagnostic radiography exposure increases the risk for thyroid microcarcinoma: a population-based case-control study. Eur J Cancer Prev. 24(5):439–46. DOI: 10.1097/CEJ.0000000000000169. PMID: 25932870. PMCID: PMC4516577.
49. Hong JY, Han K, Jung JH, Kim JS. 2019; Association of exposure to diagnostic low-dose ionizing radiation with risk of cancer among youths in South Korea. JAMA Netw Open. 2(9):e1910584. DOI: 10.1001/jamanetworkopen.2019.10584. PMID: 31483470. PMCID: PMC6727680.
Article
50. Memon A, Godward S, Williams D, Siddique I, Al-Saleh K. 2010; Dental x-rays and the risk of thyroid cancer: a case-control study. Acta Oncol. 49(4):447–53. DOI: 10.3109/02841861003705778. PMID: 20397774.
Article
51. Wingren G, Hallquist A, Hardell L. 1997; Diagnostic X-ray exposure and female papillary thyroid cancer: a pooled analysis of two Swedish studies. Eur J Cancer Prev. 6(6):550–6. DOI: 10.1097/00008469-199712000-00010. PMID: 9496457.
Article
52. Preston-Martin S, Thomas DC, White SC, Cohen D. 1988; Prior exposure to medical and dental x-rays related to tumors of the parotid gland. J Natl Cancer Inst. 80(12):943–9. DOI: 10.1093/jnci/80.12.943. PMID: 3398070.
53. Preston-Martin S, White SC. 1990; Brain and salivary gland tumors related to prior dental radiography: implications for current practice. J Am Dent Assoc. 120(2):151–8. DOI: 10.14219/jada.archive.1990.0026. PMID: 2405031.
Article
54. Hallquist A, Hardell L, Degerman A, Boquist L. 1993; Occupational exposures and thyroid cancer: results of a case-control study. Eur J Cancer Prev. 2(4):345–9. DOI: 10.1097/00008469-199307000-00009. PMID: 8358287.
55. Zabel EW, Alexander BH, Mongin SJ, Doody MM, Sigurdson AJ, Linet MS, et al. 2006; Thyroid cancer and employment as a radiologic technologist. Int J Cancer. 119(8):1940–5. DOI: 10.1002/ijc.22065. PMID: 16736495.
Article
56. American Dental Association Council on Scientific Affairs. 2006; The use of dental radiographs: update and recommendations. J Am Dent Assoc. 137(9):1304–12. DOI: 10.14219/jada.archive.2006.0393. PMID: 16946440.
57. Han MA, Kim JH. 2018; Diagnostic X-ray exposure and thyroid cancer risk: systematic review and meta-analysis. Thyroid. 28(2):220–8. DOI: 10.1089/thy.2017.0159. PMID: 29160170.
Article
58. Nagataki S, Nystrom E. 2002; Epidemiology and primary prevention of thyroid cancer. Thyroid. 12(10):889–96. DOI: 10.1089/105072502761016511. PMID: 12487771.
Article
59. Socolow EL, Hashizume A, Neriishi S, Niitani R. 1963; Thyroid carcinoma in man after exposure to ionizing radiation. A summary of the findings in Hiroshima and Nagasaki. N Engl J Med. 268:406–10. DOI: 10.1056/NEJM196302212680803. PMID: 13989805.
60. Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, et al. 2013; Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer. 132(5):1222–6. DOI: 10.1002/ijc.27749. PMID: 22847218. PMCID: PMC3910094.
Article
61. Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, et al. 1994; Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958-1987. Radiat Res. 137(2 Suppl):S17–67. DOI: 10.2307/3578892. PMID: 8127952.
Article
62. Lund E, Galanti MR. 1999; Incidence of thyroid cancer in Scandinavia following fallout from atomic bomb testing: an analysis of birth cohorts. Cancer Causes Control. 10(3):181–7. DOI: 10.1023/A:1008815327004. PMID: 10454063.
63. WHO. 1986-2016: Chernobyl at 30. An update. 2016. Available from: http://www.who.int/ionizing_radiation/chernobyl/Chernobyl-update.pdf?ua=1.
64. Hatch M, Cardis E. 2017; Somatic health effects of Chernobyl: 30 years on. Eur J Epidemiol. 32(12):1047–54. DOI: 10.1007/s10654-017-0303-6. PMID: 28929329.
Article
65. Kazakov VS, Demidchik EP, Astakhova LN. 1992; Thyroid cancer after Chernobyl. Nature. 359(6390):21. DOI: 10.1038/359021a0. PMID: 1522879.
Article
66. Drozd VM, Astakhova LN, Polyanskaya ON, Kobzev VF, Nalivko AS, Tolkachev YV. Ultrasonic diagnostics of thyroid pathology in children and adolescents affected by radionuclides. In : Proceedings of the 6th International Congress on Interventional Ultrasound. University of Copenhagen; 1993; Denmark. p. 110–1.
67. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, et al. 2005; Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 97(10):724–32. DOI: 10.1093/jnci/dji129. PMID: 15900042.
68. Jacob P, Bogdanova TI, Buglova E, Chepurniy M, Demidchik Y, Gavrilin Y, et al. 2006; Thyroid cancer among Ukrainians and Belarusians who were children or adolescents at the time of the Chernobyl accident. J Radiol Prot. 26(1):51–67. DOI: 10.1088/0952-4746/26/1/003. PMID: 16522944.
Article
69. Jacob P, Bogdanova TI, Buglova E, Chepurniy M, Demidchik Y, Gavrilin Y, et al. 2006; Thyroid cancer risk in areas of Ukraine and Belarus affected by the Chernobyl accident. Radiat Res. 165(1):1–8. DOI: 10.1667/RR3479.1. PMID: 16392956.
Article
70. Davis S, Stepanenko V, Rivkind N, Kopecky KJ, Voilleque P, Shakhtarin V, et al. 2004; Risk of thyroid cancer in the Bryansk Oblast of the Russian Federation after the Chernobyl Power Station accident. Radiat Res. 162(3):241–8. DOI: 10.1667/RR3233. PMID: 15332999.
Article
71. Astakhova LN, Anspaugh LR, Beebe GW, Bouville A, Drozdovitch VV, Garber V, et al. 1998; Chernobyl-related thyroid cancer in children of Belarus: a case-control study. Radiat Res. 150(3):349–56. DOI: 10.2307/3579983. PMID: 9728663.
Article
72. Tronko MD, Howe GR, Bogdanova TI, Bouville AC, Epstein OV, Brill AB, et al. 2006; A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst. 98(13):897–903. DOI: 10.1093/jnci/djj244. PMID: 16818853.
Article
73. Little MP, Kukush AG, Masiuk SV, Shklyar S, Carroll RJ, Lubin JH, et al. 2014; Impact of uncertainties in exposure assessment on estimates of thyroid cancer risk among Ukrainian children and adolescents exposed from the Chernobyl accident. PLoS One. 9(1):e85723. DOI: 10.1371/journal.pone.0085723. PMID: 24489667. PMCID: PMC3906013.
Article
74. Zablotska LB, Ron E, Rozhko AV, Hatch M, Polyanskaya ON, Brenner AV, et al. 2011; Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br J Cancer. 104(1):181–7. DOI: 10.1038/sj.bjc.6605967. PMID: 21102590. PMCID: PMC3039791.
Article
75. Zablotska LB, Nadyrov EA, Rozhko AV, Gong Z, Polyanskaya ON, McConnell RJ, et al. 2015; Analysis of thyroid malignant pathologic findings identified during 3 rounds of screening (1997-2008) of a cohort of children and adolescents from belarus exposed to radioiodines after the Chernobyl accident. Cancer. 121(3):457–66. DOI: 10.1002/cncr.29073. PMID: 25351557. PMCID: PMC4433039.
Article
76. World Health Organization. 1996. Health consequences of the Chernobyl accident: results of the IPHECA pilot projects and related national programmes: scientific report. WHO Press;Geneva: p. 519.
77. International Commission on Radiological Protection. 2009; Application of the Commission's recommendations for the protection of people in emergency exposure situations. ICRP Publication 109. Ann ICRP. 39(1):
78. Kaiser JC, Jacob P, Blettner M, Vavilov S. 2009; Screening effects in risk studies of thyroid cancer after the Chernobyl accident. Radiat Environ Biophys. 48(2):169–79. DOI: 10.1007/s00411-009-0211-6. PMID: 19214549.
Article
79. Mangano JJ. 2009; Geographic variation in U.S. thyroid cancer incidence and a cluster near nuclear reactors in New Jersey, New York, and Pennsylvania. Int J Health Serv. 39(4):643–61. DOI: 10.2190/HS.39.4.c. PMID: 19927407.
Article
80. Levin RJ, De Simone NF, Slotkin JF, Henson BL. 2013; Incidence of thyroid cancer surrounding three mile island nuclear facility: the 30-year follow-up. Laryngoscope. 123(8):2064–71. DOI: 10.1002/lary.23953. PMID: 23371046.
Article
81. Desbiolles A, Roudier C, Goria S, Stempfelet M, Kairo C, Quintin C, et al. 2018; Cancer incidence in adults living in the vicinity of nuclear power plants in France, based on data from the French Network of Cancer Registries. Int J Cancer. 142(5):899–909. DOI: 10.1002/ijc.31116. PMID: 29055029.
Article
82. Davis S, Kopecky KJ, Hamilton TE, Onstad LE, King BL, Saporito MS, et al. 2002. Hanford thyroid disease study final report. Fred Hutchinson Cancer Research Center;Seattle, Washington: Available from: http://www.cdc.gov/nceh/radiation/hanford/htdsweb/pdf/htdsreport.pdf.
83. Kim J, Bang Y, Lee WJ. 2016; Living near nuclear power plants and thyroid cancer risk: a systematic review and meta-analysis. Environ Int. 87:42–8. DOI: 10.1016/j.envint.2015.11.006. PMID: 26638017.
Article
84. Douglas AJ, Omar RZ, Smith PG. 1994; Cancer mortality and morbidity among workers at the Sellafield plant of British Nuclear Fuels. Br J Cancer. 70(6):1232–43. DOI: 10.1038/bjc.1994.479. PMID: 7981083. PMCID: PMC2033678.
Article
85. International Atomic Energy Agency. 2015. The Fukushima Daiichi accident; 2015. Available from: http://www-pub.iaea.org/books/IAEABooks/10962/The-Fukushima-Daiichi-Accident.
86. Ivanov VK, Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Vlasov OK, et al. 2012; Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991-2008 follow-up period). Radiat Prot Dosimetry. 151(3):489–99. DOI: 10.1093/rpd/ncs019. PMID: 22416255.
Article
87. Likhtarov I, Kovgan L, Vavilov S, Chepurny M, Ron E, Lubin J, et al. 2006; Post-Chernobyl thyroid cancers in Ukraine. Report 2: risk analysis. Radiat Res. 166(2):375–86. DOI: 10.1667/RR3593.1. PMID: 16881739.
88. Suzuki S, Matsumoto Y, Ookouchi C, Nakano K, Iwadate M, Suzuki S, et al. 2018; The clinicopathological features of childhood and adolescent thyroid cancer in Fukushima after the Fukushima Daiichi nuclear power plant accident. Thyroid. Supplement 1(Poster 136):DOI: 10.1016/B978-0-12-812768-1.00015-0. PMID: 28174413.
89. Suzuki S, Bogdanova TI, Saenko VA, Hashimoto Y, Ito M, Iwadate M, et al. 2019; Histopathological analysis of papillary thyroid carcinoma detected during ultrasound screening examinations in Fukushima. Cancer Sci. 110(2):817–27. DOI: 10.1111/cas.13912. PMID: 30548366. PMCID: PMC6361578.
Article
90. Fridman M, Savva N, Krasko O, Mankovskaya S, Branovan DI, Schmid KW, et al. 2014; Initial presentation and late results of treatment of post-Chernobyl papillary thyroid carcinoma in children and adolescents of Belarus. J Clin Endocrinol Metab. 99(8):2932–41. DOI: 10.1210/jc.2013-3131. PMID: 24823453.
Article
91. Yamashita S, Suzuki S, Suzuki S, Shimura H, Saenko V. 2018; Lessons from Fukushima: latest findings of thyroid cancer after the Fukushima Nuclear Power Plant accident. Thyroid. 28(1):11–22. DOI: 10.1089/thy.2017.0283. PMID: 28954584. PMCID: PMC5770131.
Article
92. Kim E, Kurihara O, Kunishima N, Momose T, Ishikawa T, Akashi M. 2016; Internal thyroid doses to Fukushima residents-estimation and issues remaining. J Radiat Res. 57 Suppl 1:i118–i26. DOI: 10.1093/jrr/rrw061. PMID: 27538842. PMCID: PMC4990119.
Article
93. International Agency for Research on Cancer. The comprehensive interactive data set of cancer incidence in five continents. Available from: http://ci5.iarc.fr/Default.aspx.
94. Keane E, Francis EC, Cathain EO, Rowley H. 2017; The role of race in thyroid cancer: systematic review. J Laryngol Otol. 131(6):480–6. DOI: 10.1017/S0022215117000688. PMID: 28367769.
Article
95. Nose V. 2011; Familial thyroid cancer: a review. Mod Pathol. 24 Suppl 2:S19–33. DOI: 10.1038/modpathol.2010.147. PMID: 21455198.
Article
96. Jasperson KW, Patel SG, Ahnen DJ. Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, editors. 2017. APC-associated polyposis conditions. GeneReviews. University of Washington, Seattle;Seattle (WA), USA: Available from: https://www.ncbi.nlm.nih.gov/books/NBK1345/.
Article
97. Eng C. Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, editors. 2001. PTEN hamartoma tumor syndrome. GeneReviews. University of Washington, Seattle;Seattle (WA), USA: Available from: https://www.ncbi.nlm.nih.gov/books/NBK1488/.
Article
98. Khan NE, Bauer AJ, Schultz KAP, Doros L, Decastro RM, Ling A, et al. 2017; Quantification of thyroid cancer and multinodular goiter risk in the DICER1 syndrome: a family-based cohort study. J Clin Endocrinol Metab. 102(5):1614–22. DOI: 10.1210/jc.2016-2954. PMID: 28323992. PMCID: PMC5443331.
Article
99. Gudmundsson J, Thorleifsson G, Sigurdsson JK, Stefansdottir L, Jonasson JG, Gudjonsson SA, et al. 2017; A genome-wide association study yields five novel thyroid cancer risk loci. Nat Commun. 8:14517. DOI: 10.1038/ncomms14517. PMID: 28195142. PMCID: PMC5316879.
Article
100. Takahashi M, Saenko VA, Rogounovitch TI, Kawaguchi T, Drozd VM, Takigawa-Imamura H, et al. 2010; The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum Mol Genet. 19(12):2516–23. DOI: 10.1093/hmg/ddq123. PMID: 20350937.
Article
101. McTiernan AM, Weiss NS, Daling JR. 1984; Incidence of thyroid cancer in women in relation to reproductive and hormonal factors. Am J Epidemiol. 120(3):423–35. DOI: 10.1093/oxfordjournals.aje.a113907. PMID: 6475918.
102. Levi F, Franceschi S, Gulie C, Negri E, La Vecchia C. 1993; Female thyroid cancer: the role of reproductive and hormonal factors in Switzerland. Oncology. 50(4):309–15. DOI: 10.1159/000227201. PMID: 8497382.
Article
103. Kilfoy BA, Devesa SS, Ward MH, Zhang Y, Rosenberg PS, Holford TR, et al. 2009; Gender is an age-specific effect modifier for papillary cancers of the thyroid gland. Cancer Epidemiol Biomarkers Prev. 18(4):1092–100. DOI: 10.1158/1055-9965.EPI-08-0976. PMID: 19293311. PMCID: PMC2667567.
Article
104. Faria CC, Peixoto MS, Carvalho DP, Fortunato RS. 2019; The emerging role of estrogens in thyroid redox homeostasis and carcinogenesis. Oxid Med Cell Longev. 2019:2514312. DOI: 10.1155/2019/2514312. PMID: 30728883. PMCID: PMC6343143.
Article
105. Liang L, Zheng XC, Hu MJ, Zhang Q, Wang SY, Huang F. 2019; Association of benign thyroid diseases with thyroid cancer risk: a meta-analysis of prospective observational studies. J Endocrinol Invest. 42(6):673–85. DOI: 10.1007/s40618-018-0968-z. PMID: 30387079.
Article
106. Kitahara CM, Farkas DKR, Jorgensen JOL, Cronin-Fenton D, Sorensen HT. 2018; Benign thyroid diseases and risk of thyroid cancer: a nationwide cohort study. J Clin Endocrinol Metab. 103(6):2216–24. DOI: 10.1210/jc.2017-02599. PMID: 29590402. PMCID: PMC6276704.
Article
107. Steele CB, Thomas CC, Henley SJ, Massetti GM, Galuska DA, Agurs-Collins T, et al. 2017; Vital signs: trends in incidence of cancers associated with overweight and obesity - United States, 2005-2014. MMWR Morb Mortal Wkly Rep. 66(39):1052–8. DOI: 10.15585/mmwr.mm6639e1. PMID: 28981482. PMCID: PMC5720881.
Article
108. Centers for Disease Control and Prevention. 2017. Available from: https://www.cdc.gov.
109. Schmid D, Ricci C, Behrens G, Leitzmann MF. 2015; Adiposity and risk of thyroid cancer: a systematic review and meta-analysis. Obes Rev. 16(12):1042–54. DOI: 10.1111/obr.12321. PMID: 26365757.
Article
110. Zimmermann MB, Galetti V. 2015; Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Res. 8:8. DOI: 10.1186/s13044-015-0020-8. PMID: 26146517. PMCID: PMC4490680.
Article
111. Bacher-Stier C, Riccabona G, Totsch M, Kemmler G, Oberaigner W, Moncayo R. 1997; Incidence and clinical characteristics of thyroid carcinoma after iodine prophylaxis in an endemic goiter country. Thyroid. 7(5):733–41. DOI: 10.1089/thy.1997.7.733. PMID: 9349576.
Article
112. Lind P, Langsteger W, Molnar M, Gallowitsch HJ, Mikosch P, Gomez I. 1998; Epidemiology of thyroid diseases in iodine sufficiency. Thyroid. 8(12):1179–83. DOI: 10.1089/thy.1998.8.1179. PMID: 9920375.
Article
113. Kovacs GL, Gonda G, Vadasz G, Ludmany E, Uhrin K, Gorombey Z, et al. 2005; Epidemiology of thyroid microcarcinoma found in autopsy series conducted in areas of different iodine intake. Thyroid. 15(2):152–7. DOI: 10.1089/thy.2005.15.152. PMID: 15753675.
Article
114. Cao LZ, Peng XD, Xie JP, Yang FH, Wen HL, Li S. 2017; The relationship between iodine intake and the risk of thyroid cancer: a meta-analysis. Medicine (Baltimore). 96(20):e6734. DOI: 10.1097/MD.0000000000006734. PMID: 28514290. PMCID: PMC5440127.
115. Lee JH, Hwang Y, Song RY, Yi JW, Yu HW, Kim SJ, et al. 2017; Relationship between iodine levels and papillary thyroid carcinoma: a systematic review and meta-analysis. Head Neck. 39(8):1711–8. DOI: 10.1002/hed.24797. PMID: 28513893.
Article
116. Kitahara CM, Linet MS, Beane Freeman LE, Check DP, Church TR, Park Y, et al. 2012; Cigarette smoking, alcohol intake, and thyroid cancer risk: a pooled analysis of five prospective studies in the United States. Cancer Causes Control. 23(10):1615–24. DOI: 10.1007/s10552-012-0039-2. PMID: 22843022. PMCID: PMC3511822.
Article
117. Galanti MR, Hansson L, Lund E, Bergstrom R, Grimelius L, Stalsberg H, et al. 1996; Reproductive history and cigarette smoking as risk factors for thyroid cancer in women: a population-based case-control study. Cancer Epidemiol Biomarkers Prev. 5(6):425–31. PMID: 8781737.
118. Rossing MA, Cushing KL, Voigt LF, Wicklund KG, Daling JR. 2000; Risk of papillary thyroid cancer in women in relation to smoking and alcohol consumption. Epidemiology. 11(1):49–54. DOI: 10.1097/00001648-200001000-00011. PMID: 10615843.
Article
119. Kreiger N, Parkes R. 2000; Cigarette smoking and the risk of thyroid cancer. Eur J Cancer. 36(15):1969–73. DOI: 10.1016/S0959-8049(00)00198-2. PMID: 11000579.
Article
120. Karrasch S, Ernst K, Behr J, Heinrich J, Huber RM, Nowak D, et al. 2011; Exhaled nitric oxide and influencing factors in a random population sample. Respir Med. 105(5):713–8. DOI: 10.1016/j.rmed.2010.11.002. PMID: 21146387.
Article
121. Bommarito L, Migliore E, Bugiani M, Heffler E, Guida G, Bucca C, et al. 2008; Exhaled nitric oxide in a population sample of adults. Respiration. 75(4):386–92. DOI: 10.1159/000104852. PMID: 17596680.
Article
122. Russo M, Malandrino P, Moleti M, D'Angelo A, Tavarelli M, Sapuppo G, et al. 2017; Thyroid cancer in the pediatric age in Sicily: influence of the volcanic environment. Anticancer Res. 37(3):1515–22. DOI: 10.21873/anticanres.11479. PMID: 28314327.
123. Kung TM, Ng WL, Gibson JB. 1981; Volcanoes and carcinoma of the thyroid: a possible association. Arch Environ Health. 36(5):265–7. DOI: 10.1080/00039896.1981.10667635. PMID: 7294892.
Article
124. Arnbjornsson E, Arnbjornsson A, Olafsson A. 1986; Thyroid cancer incidence in relation to volcanic activity. Arch Environ Health. 41(1):36–40. DOI: 10.1080/00039896.1986.9935763. PMID: 3963885.
125. Kristbjornsdottir A, Rafnsson V. 2012; Incidence of cancer among residents of high temperature geothermal areas in Iceland: a census based study 1981 to 2010. Environ Health. 11:73. DOI: 10.1186/1476-069X-11-73. PMID: 23025471. PMCID: PMC3511870.
Article
126. Clero E, Leux C, Brindel P, Truong T, Anger A, Teinturier C, et al. 2010; Pooled analysis of two case-control studies in New Caledonia and French Polynesia of body mass index and differentiated thyroid cancer: the importance of body surface area. Thyroid. 20(11):1285–93. DOI: 10.1089/thy.2009.0456. PMID: 20932181.
Article
127. Zhang Y, Guo GL, Han X, Zhu C, Kilfoy BA, Zhu Y, et al. 2008; Do polybrominated diphenyl ethers (PBDEs) increase the risk of thyroid cancer? Biosci Hypotheses. 1(4):195–9. DOI: 10.1016/j.bihy.2008.06.003. PMID: 19122824. PMCID: PMC2612591.
128. Lerro CC, Koutros S, Andreotti G, Sandler DP, Lynch CF, Louis LM, et al. 2019; Cancer incidence in the Agricultural Health Study after 20 years of follow-up. Cancer Causes Control. 30(4):311–22. DOI: 10.1007/s10552-019-01140-y. PMID: 30805813. PMCID: PMC6459699.
Article
129. Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, et al. 2018; Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health. 15(7):1557. DOI: 10.3390/ijerph15071557. PMID: 30041450. PMCID: PMC6068531.
Article
130. Drozd VM, Saenko VA, Brenner AV, Drozdovitch V, Pashkevich VI, Kudelsky AV, et al. 2015; Major factors affecting incidence of childhood thyroid cancer in Belarus after the Chernobyl accident: do nitrates in drinking water play a role? PLoS One. 10(9):e0137226. DOI: 10.1371/journal.pone.0137226. PMID: 26397978. PMCID: PMC4580601.
Article
131. Drozd VM, Branovan I, Shiglik N, Biko J, Reiners C. 2018; Thyroid cancer induction: nitrates as independent risk factors or risk modulators after radiation exposure, with a focus on the Chernobyl accident. Eur Thyroid J. 7(2):67–74. DOI: 10.1159/000485971. PMID: 29594057. PMCID: PMC5869559.
Article
132. Poulsen R, Cedergreen N, Hayes T, Hansen M. 2018; Nitrate: an environmental endocrine disruptor? A review of evidence and research needs. Environ Sci Technol. 52(7):3869–87. DOI: 10.1021/acs.est.7b06419. PMID: 29494771.
Article
133. Davidson EA, David MB, Galloway JN, Goodale CL, Haeuber R, Harrison JA, et al. 2011; Excess nitrogen in the U.S. environment: trends, risks, and solutions. Issues Ecol. 15:1–16.
134. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al. 1997; Human alteration of the global nitrogen cycle: Sources and consequences. Ecol Appl. 7:737–50. DOI: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2.
Article
135. National Primary Drinking Water Regulations: Inorganic Chemicals. Available from: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.
136. Ward MH, Kilfoy BA, Weyer PJ, Anderson KE, Folsom AR, Cerhan JR. 2010; Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology. 21(3):389–95. DOI: 10.1097/EDE.0b013e3181d6201d. PMID: 20335813. PMCID: PMC2879161.
Article
137. Xie L, Mo M, Jia HX, Liang F, Yuan J, Zhu J. 2016; Association between dietary nitrate and nitrite intake and sitespecific cancer risk: evidence from observational studies. Oncotarget. 7(35):56915–32. DOI: 10.18632/oncotarget.10917. PMID: 27486968. PMCID: PMC5302962.
Article
138. Temkin A, Evans S, Manidis T, Campbell C, Naidenko OV. 2019; Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. Environ Res. 176:108442. DOI: 10.1016/j.envres.2019.04.009. PMID: 31196558.
Article
139. Orita M, Iyama K, Hayashida N, Mitsutake N, Suzuki S, Yamashita S, et al. 2015; Implication of Nitrate in Drinking Water in Kawauchi Village, Fukushima. Thyroid. 25(9):1064–5. DOI: 10.1089/thy.2015.0161. PMID: 26054563.
Article
140. Drozd V, Branovan I, Platonova T, Shiglik N, Biko J, Reiners C. 2018; Nitrates impact on the prevalence of radiation induced thyroid cancer in rural and urban populations of Belarus among the children who were born before and after the Chernobyl accident. Program of the 88th Annual Meeting of the American Thyroid association. Washington DC, 2018. Thyroid. Supplement 1:28. (Abstract).
141. Radiation and Your Patient: a Guide for Medical Practitioners. A web module produced by Committee 3 of the International Commission on Radiological Protection (ICRP). Available from: http://icrp.org/docs/Rad_for_GP_for_web.pdf.
142. American College of Radiology. Ten things physicians and patients should question. Available from: https://www.choosingwisely.org/societies/american-college-of-radiology/.
143. WHO. 2017a. Iodine thyroid blocking: guidelines for use in planning for and responding to radiological and nuclear emergencies. World Health Organization;Geneva, Switzerland: Available from: http://www.who.int/ionizing_radiation/pub_meet/iodine-thyroid-blocking/en/.
Full Text Links
  • IJT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr