J Vet Sci.  2018 Sep;19(5):683-692. 10.4142/jvs.2018.19.5.683.

Quantitative assessment of systolic and diastolic right ventricular function by echocardiography and speckle-tracking imaging: a prospective study in 104 dogs

Affiliations
  • 1Alfort Cardiology Unit (UCA), Centre Hospitalier Universitaire Vétérinaire d'Alfort (CHUVA), National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94704 Cedex, France. valerie.chetboul@vet-alfort.fr
  • 2Inserm U955, Team 03, Créteil, 94010 Cedex, France.
  • 3Research Clinic Unit, National Veterinary School of Toulouse, Toulouse University, Toulouse, F-31076 Cedex 03, France.
  • 4TOXALIM, National Veterinary School of Toulouse, INRA, Toulouse University, Toulouse, F-31076 Cedex 03, France.
  • 5Clinical Epidemiology and Biostatistics Unit, National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94704 Cedex, France.
  • 6Pharmacology-Toxicology Unit, National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94704 Cedex, France.

Abstract

Our aim was (1) to determine the within-day and between-day variability of several indices of systolic and diastolic right ventricular (RV) function by using conventional echocardiography and speckle-tracking echocardiography (STE) (Study 1), (2) to quantify these variables in a large healthy canine population (n = 104) with Doppler-derived estimated systolic pulmonary arterial pressure (SPAP) and left ventricular (LV) function, and (3) to establish the corresponding reference intervals (Study 2). For both studies, RV variables included tricuspid annular plane systolic excursion (TAPSE), right fractional area change (RFAC), STE longitudinal systolic strain (StS) of the RV free wall (RVFW) and of the entire RV (i.e., global RV StS), STE longitudinal systolic RVFW strain rate (SRS), and the diastolic early:late strain rate ratio. All but one within- and between-day coefficients of variation (13/14) were < 15%, the lowest being observed for TAPSE (3.6-9.8%), global RV StS (3.8-9.9%), and RVFW StS (3.7-7.3%). SPAP was weakly and negatively correlated with the TAPSE:body weight ratio (r(s) = −0.26, p = 0.01) and RVFW SRS (r(s) = −0.23, p < 0.05). Reference intervals (lower and upper limits with 90% confidence intervals) were provided for all variables. STE provides a non-invasive evaluation of RV function that may be used for clinical investigations in canine cardiology.

Keyword

diastole; heart; myocardium; systole

MeSH Terms

Animals
Arterial Pressure
Cardiology
Diastole
Dogs*
Echocardiography*
Heart
Myocardium
Prospective Studies*
Systole
Ventricular Function, Right*

Figure

  • Fig. 1 Representative speckle-tracking imaging examination performed for this study. (A) Representative longitudinal right ventricular (RV) strain profiles obtained from 3 segments (i.e., basal, middle, and apical) of the RV free wall (RVFW). The “VA Ferm” corresponds to pulmonary valve closure and the dotted line to the RVFW mean strain (RVFW systolic strain [StS]) curve over time. The corresponding color map below displays the change in strain over time in each RVFW segment during a single cardiac cycle. (B) Representative longitudinal RV strain rate profiles obtained from 3 segments (i.e., basal, middle, and apical) of the RVFW. The “VA Ferm” corresponds to pulmonary valve closure. The corresponding color map below displays the change in strain rate over time in each RVFW segment during a single cardiac cycle. SRS, systolic strain rate of the RVFW; SRE, early strain rate of the RVFW; SRA, late diastolic strain rate of the RVFW. (C) Representative calculations of the global RV StS and the global left ventricular (LV) StS. The global RV StS was assessed by averaging the 3 RVFW and the 3 interventricular septal (IVS) peak StS values. The global LV StS was assessed by averaging the 3 IVS and the 3 LV free wall (LVFW) peak StS values. RA, right atrium; LA, left atrium.

  • Fig. 2 Box plots showing absolute values of right ventricular (RV) free wall systolic strain (RVFW Strain), global RV systolic strain (Global RV Strain) and global left ventricular (LV) systolic strain (Global LV Strain). The box represents the interquartile range, with the median indicated by the horizontal line. The whiskers extend from the minimum to the maximum values, excluding outliers that are presented by circles or extreme outliers that are presented by asterisk.


Reference

1. Badano LP, Ginghina C, Easaw J, Muraru D, Grillo MT, Lancellotti P, Pinamonti B, Coghlan G, Marra MP, Popescu BA, De Vita S. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr. 2010; 11:27–37.
Article
2. Basso C, Fox PR, Meurs KM, Towbin JA, Spier AW, Calabrese F, Maron BJ, Thiene G. Arrhythmogenic right ventricular cardiomyopathy causing sudden cardiac death in boxer dogs: a new animal model of human disease. Circulation. 2004; 109:1180–1185.
Article
3. Bleeker GB, Steendijk P, Holman ER, Yu CM, Breithardt OA, Kaandorp TA, Schalij MJ, van der Wall EE, Nihoyannopoulos P, Bax JJ. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart. 2006; 92:Suppl 1. i19–i26.
Article
4. Burgess MI, Bright-Thomas RJ, Ray SG. Echocardiographic evaluation of right ventricular function. Eur J Echocardiogr. 2002; 3:252–262.
Article
5. Burgess MI, Mogulkoc N, Bright-Thomas RJ, Bishop P, Egan JJ, Ray SG. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J Am Soc Echocardiogr. 2002; 15:633–639.
Article
6. Chetboul V. Advanced techniques in echocardiography in small animals. Vet Clin North Am Small Anim Pract. 2010; 40:529–543.
Article
7. Chetboul V, Athanassiadis N, Concordet D, Nicolle A, Tessier D, Castagnet M, Pouchelon JL, Lefebvre HP. Observer-dependent variability of quantitative clinical endpoints: the example of canine echocardiography. J Vet Pharmacol Ther. 2004; 27:49–56.
Article
8. Chetboul V, Sampedrano CC, Gouni V, Concordet D, Lamour T, Ginesta J, Nicolle AP, Pouchelon JL, Lefebvre HP. Quantitative assessment of regional right ventricular myocardial velocities in awake dogs by Doppler tissue imaging: repeatability, reproducibility, effect of body weight and breed, and comparison with left ventricular myocardial velocities. J Vet Intern Med. 2005; 19:837–844.
Article
9. Chetboul V, Sampedrano CC, Gouni V, Nicolle AP, Pouchelon JL, Tissier R. Ultrasonographic assessment of regional radial and longitudinal systolic function in healthy awake dogs. J Vet Intern Med. 2006; 20:885–893.
Article
10. Chetboul V, Serres F, Gouni V, Tissier R, Pouchelon JL. Radial strain and strain rate by two-dimensional speckle tracking echocardiography and the tissue velocity based technique in the dog. J Vet Cardiol. 2007; 9:69–81.
Article
11. Chin KM, Coghlan G. Characterizing the right ventricle: advancing our knowledge. Am J Cardiol. 2012; 110:6 Suppl. 3S–8S.
Article
12. Clinical and Laboratory Standards Institute (CLSI). Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline. 3rd ed. Wayne: CLSI;2008. CLSI Document EP28-A3c.
13. de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, Lablanche JM. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998; 32:948–954.
Article
14. Fukuda Y, Tanaka H, Sugiyama D, Ryo K, Onishi T, Fukuya H, Nogami M, Ohno Y, Emoto N, Kawai H, Hirata K. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr. 2011; 24:1101–1108.
Article
15. Geffré A, Concordet D, Braun JP, Trumel C. Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet Clin Pathol. 2011; 40:107–112.
Article
16. Gentile-Solomon JM, Abbott JA. Conventional echocardiographic assessment of the canine right heart: reference intervals and repeatability. J Vet Cardiol. 2016; 18:234–247.
Article
17. Giusca S, Dambrauskaite V, Scheurwegs C, D'hooge J, Claus P, Herbots L, Magro M, Rademakers F, Meyns B, Delcroix M, Voigt JU. Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart. 2010; 96:281–288.
Article
18. Kaye BM, Borgeat K, Mõtsküla PF, Luis Fuentes V, Connolly DJ. Association of tricuspid annular plane systolic excursion with survival time in Boxer dogs with ventricular arrhythmias. J Vet Intern Med. 2015; 29:582–588.
Article
19. Kienle RD, Kittleson MD. Pulmonary arterial and systemic arterial hypertension. In : Kittleson MD, Kienle RD, editors. Small Animal Cardiovascular Medicine. St. Louis: Mosby;1998. p. 433–449.
20. Kusunose K, Tsutsui RS, Bhatt K, Budev MM, Popović ZB, Griffin BP, Bolen MA. Prognostic value of RV function before and after lung transplantation. JACC Cardiovasc Imaging. 2014; 7:1084–1094.
Article
21. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16:233–270.
Article
22. Limongelli G, Rea A, Masarone D, Francalanci MP, Anastasakis A, Calabro' R, Giovanna RM, Bossone E, Elliott PM, Pacileo G. Right ventricular cardiomyopathies: a multidisciplinary approach to diagnosis. Echocardiography. 2015; 32:Suppl 1. S75–S94.
Article
23. Locatelli C, Spalla I, Zanaboni AM, Brambilla PG, Bussadori C. Assessment of right ventricular function by feature-tracking echocardiography in conscious healthy dogs. Res Vet Sci. 2016; 105:103–110.
Article
24. Meluzín J, Spinarová L, Bakala J, Toman J, Krejcí J, Hude P, Kára T, Soucek M. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J. 2001; 22:340–348.
Article
25. Meris A, Faletra F, Conca C, Klersy C, Regoli F, Klimusina J, Penco M, Pasotti E, Pedrazzini GB, Moccetti T, Auricchio A. Timing and magnitude of regional right ventricular function: a speckle tracking-derived strain study of normal subjects and patients with right ventricular dysfunction. J Am Soc Echocardiogr. 2010; 23:823–831.
Article
26. Meurs KM, Stern JA, Reina-Doreste Y, Spier AW, Koplitz SL, Baumwart RD. Natural history of arrhythmogenic right ventricular cardiomyopathy in the boxer dog: a prospective study. J Vet Intern Med. 2014; 28:1214–1220.
Article
27. Meyer P, Filippatos GS, Ahmed MI, Iskandrian AE, Bittner V, Perry GJ, White M, Aban IB, Mujib M, Dell'Italia LJ, Ahmed A. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation. 2010; 121:252–258.
Article
28. Motoji Y, Tanaka H, Fukuda Y, Sano H, Ryo K, Imanishi J, Miyoshi T, Sawa T, Mochizuki Y, Matsumoto K, Emoto N, Hirata K. Interdependence of right ventricular systolic function and left ventricular filling and its association with outcome for patients with pulmonary hypertension. Int J Cardiovasc Imaging. 2015; 31:691–698.
Article
29. Naeije R. Assessment of right ventricular function in pulmonary hypertension. Curr Hypertens Rep. 2015; 17:35.
Article
30. Oxford EM, Danko CG, Fox PR, Kornreich BG, Moïse NS. Change in β-catenin localization suggests involvement of the canonical Wnt pathway in Boxer dogs with arrhythmogenic right ventricular cardiomyopathy. J Vet Intern Med. 2014; 28:92–101.
Article
31. Oxford EM, Danko CG, Kornreich BG, Maass K, Hemsley SA, Raskolnikov D, Fox PR, Delmar M, Moïse NS. Ultrastructural changes in cardiac myocytes from Boxer dogs with arrhythmogenic right ventricular cardiomyopathy. J Vet Cardiol. 2011; 13:101–113.
Article
32. Pariaut R, Saelinger C, Strickland KN, Beaufrère H, Reynolds CA, Vila J. Tricuspid annular plane systolic excursion (TAPSE) in dogs: reference values and impact of pulmonary hypertension. J Vet Intern Med. 2012; 26:1148–1154.
Article
33. Pleister A, Kahwash R, Haas G, Ghio S, Cittadini A, Baliga RR. Echocardiography and heart failure: a glimpse of the right heart. Echocardiography. 2015; 32:Suppl 1. S95–S107.
Article
34. Portnoy SG, Rudski LG. Echocardiographic evaluation of the right ventricle: a 2014 perspective. Curr Cardiol Rep. 2015; 17:21.
Article
35. Rigolin VH, Robiolio PA, Wilson JS, Harrison JK, Bashore TM. The forgotten chamber: the importance of the right ventricle. Cathet Cardiovasc Diagn. 1995; 35:18–28.
Article
36. Santamore WP, Dell'Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998; 40:289–308.
Article
37. Serres F, Chetboul V, Gouni V, Tissier R, Carlos Sampedrano CC, Pouchelon JL. Diagnostic value of echo-Doppler and tissue Doppler imaging in dogs with pulmonary arterial hypertension. J Vet Intern Med. 2007; 21:1280–1289.
Article
38. Serres F, Chetboul V, Tissier R, Poujol L, Gouni V, Carlos Sampedrano C, Pouchelon JL. Comparison of 3 ultrasound methods for quantifying left ventricular systolic function: correlation with disease severity and prognostic value in dogs with mitral valve disease. J Vet Intern Med. 2008; 22:566–577.
Article
39. Soydan LC, Kellihan HB, Bates ML, Stepien RL, Consigny DW, Bellofiore A, Francois CJ, Chesler NC. Accuracy of Doppler echocardiographic estimates of pulmonary artery pressures in a canine model of pulmonary hypertension. J Vet Cardiol. 2015; 17:13–24.
Article
40. Visser LC, Scansen BA, Schober KE, Bonagura JD. Echocardiographic assessment of right ventricular systolic function in conscious healthy dogs: repeatability and reference intervals. J Vet Cardiol. 2015; 17:83–96.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr