Ann Lab Med.  2018 Mar;38(2):155-159. 10.3343/alm.2018.38.2.155.

Prevalence of blaZ Gene and Performance of Phenotypic Tests to Detect Penicillinase in Staphylococcus aureus Isolates from Japan

Affiliations
  • 1Division of Clinical Laboratory, Byotai-Seiri Laboratory, Tokyo, Japan.
  • 2Laboratory of Infectious Diseases, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan. taka2si@lisci.kitasato-u.ac.jp
  • 3Division of Clinical Laboratory Examination, Teikyo Junior College, Tokyo, Japan.

Abstract

Guidelines recommend that clinical laboratories perform phenotypic tests (nitrocefin-based test and penicillin 10-U [P10] or 1-U [P1] zone edge tests) to detect penicillinase in Staphylococcus aureus isolates. This study aimed to assess the prevalence of blaZ encoding penicillinase and perform various phenotypic tests in S. aureus isolates from Japan. We prospectively collected 200 methicillin-susceptible S. aureus isolates from June 2015 to January 2016 and performed six phenotypic tests (nitrocefin-based test, P10 zone edge test/P10 diffusion test, penicillin 2-U [P2] zone edge test/P2 diffusion test, and cloverleaf test) on each sample. We confirmed the presence of blaZ (two blaZ-positive isolates) using PCR. Using blaZ PCR as a standard, we observed a low sensitivity (50%) and positive predictive value (PPV, 50%) of the nitrocefin-based test, low PPV (18.2%) of the P10 zone edge test, low sensitivity (50%) of the P10 diffusion test, low PPV (50% and 22.2%) of the P2 zone edge test and P2 diffusion test, respectively, and low sensitivity (50%) of the cloverleaf test. These data suggest a low performance (sensitivity and PPV) of these six phenotypic tests because of the low prevalence (1%) of blaZ in S. aureus isolates from Japan.

Keyword

blaZ; Phenotypic tests; Penicillinase; Staphylococcus aureus; Japan

MeSH Terms

Diffusion
Japan*
Penicillinase*
Penicillins
Polymerase Chain Reaction
Prevalence*
Prospective Studies
Staphylococcus aureus*
Staphylococcus*
Penicillinase
Penicillins

Reference

1. Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science. 2001; 291:1962–1965. PMID: 11239156.
2. Hartman BJ, Tomasz A. Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984; 158:513–516. PMID: 6563036.
3. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003; 111:1265–1273. PMID: 12727914.
4. Gregory PD, Lewis RA, Curnock SP, Dyke KG. Studies of the repressor (BlaI) of β-lactamase synthesis in Staphylococcus aureus. Mol Microbiol. 1997; 24:1025–1037. PMID: 9220009.
5. Olsen JE, Christensen H, Aarestrup FM. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother. 2006; 57:450–460. PMID: 16449305.
6. Nannini EC, Stryjewski ME, Singh KV, Bourgogne A, Rude TH, Corey GR, et al. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: frequency and possible cause of cefazolin treatment failure. Antimicrob Agents Chemother. 2009; 53:3437–3441. PMID: 19487449.
7. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: 22nd informational supplement. Document M100-S22. Wayne, PA: CLSI;2012.
8. European Committee on Antimicrobial Susceptibility. Breakpoint tables for interpretation of MICs and zone diameters version 2.0. European Committee on Antimicrobial Susceptibility. Basel, Switzerland: 2012. http://www.eucast.org/eucast_susceptibility_testing/breakpoints/.
9. Kaase M, Lenga S, Friedrich S, Szabados F, Sakinc T, Kleine B, et al. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clin Microbiol Infect. 2008; 14:614–616. PMID: 18397333.
10. El Feghaly RE, Stamm JE, Fritz SA, Burnham CA. Presence of the blaZ beta-lactamase gene in isolates of Staphylococcus aureus that appear penicillin susceptible by conventional phenotypic methods. Diagn Microbiol Infect Dis. 2012; 74:388–393. PMID: 22959917.
11. Papanicolas LE, Bell JM, Bastian I. Performance of phenotypic tests for detection of penicillinase in Staphylococcus aureus isolates from Australia. J Clin Microbiol. 2014; 52:1136–1138. PMID: 24452169.
12. Sugimoto K, Komatsu M, Tanaka S, Tanimoto E, Kubo Y, Okada J, et al. Performance assessment of various β-lactamase production tests with penicillin-susceptible Staphylococcus aureus isolates. Nihon Rinsho Biseibutsugaku Zasshi. 2011; 21:136. (in Japanese).
13. Komatsu M. Interpretation of antimicrobial susceptibility testing data for Staphylococcus spp. Medical Technology. 2014; 42:84–87. Accessed on 4th October 2017. http://www.de-hon.ne.jp/digital/bin/product.asp?sku=6491008607014801500P in Japanese.
14. Tomei T, Kamichi Y, Maruo M, Aragaki M, Nakasone I. Comparison of tests for detecting penicillinase in Staphylococcus aureus. In : Proceeding of the 49th JAMT Kyushu-shibu Igakukensagakkai; 2014. p. p26. Accessed on 4th October 2017. http://rnavi.ndl.go.jp/books/2017/04/025818752.php in Japanese.
15. Hombach M, Weissert C, Senn MM, Zbinden R. Comparison of phenotypic methods for the detection of penicillinase in Staphylococcus aureus and proposal of a practical diagnostic approach. J Antimicrob Chemother. 2017; 72:1089–1093. PMID: 28069883.
16. Milheirico C, Portelinha A, Krippahl L, de Lencastre H, Oliveira DC. Evidence for a purifying selection acting on the β-lactamase locus in epidemic clones of methicillin-resistant Staphylococcus aureus. BMC Microbiol. 2011; 11:76. PMID: 21496235.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr