Clin Exp Otorhinolaryngol.  2016 Dec;9(4):298-308. 10.21053/ceo.2015.01662.

Pathogenesis and Bone Resorption in Acquired Cholesteatoma: Current Knowledge and Future Prospectives

Affiliations
  • 1Department of Otolaryngology, Second Hospital, Fujita Health University School of Medicine, Nagoya, Japan. seisay@fujita-hu.ac.jp
  • 2Department of Otolaryngology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt.
  • 3Department of Otolaryngology, Aichi Medical University, Nagakute, Japan.
  • 4Department of Pathology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt.
  • 5Department of Pathology, Second Hospital, Fujita Health University School of Medicine, Nagoya, Japan.
  • 6Department of Otolaryngology, Yonaha General Hospital, Kuwana, Japan.

Abstract

Cholesteatoma is a cystic non tumorous lesion of the temporal bone that has the ability to destroy nearby structures by its power to cause bone resorption and as a result, fatal complications prevail. We aimed to conduct a comprehensive review for pathogenesis of acquired cholesteatoma, bone resorption mechanisms, and offer a future vision of this serious disease. We have reviewed different theories for pathogenesis of acquired cholesteatoma including the most relevant and updated ones with special emphasis on the mechanisms of bone resorption through Medline/PubMed research using the keywords "˜aetiopathogenesis, bone resorption, acquired cholesteatoma, temporal bone, and cytokines.' In order to strengthen our study, we searched the reference lists of identified reviews. Cholesteatoma is a subject of debate among otolaryngologists since it was prescribed firstly. Over many decades, several theories were postulated for aetiopathogenesis of cholesteatoma with a tendency to follow more than one theory to explain the proper nature of that disease. Until now, the mechanism of bone resorption has yet to be more clarified. In the last century, a leap has occurred in the field of biomolecular cholesteatoma research which improved our knowledge about its pathophysiology and bone destructive mechanism. However, surgery is still the only available treatment. We conclude that discovery of new therapeutic choices for cholesteatoma other than surgery by the use of anti-growth, anti-proliferative, apoptotic agents as well as medications that antagonize osteoclastogenesis should be the main concern in the future clinical and experimental research work. Also, searching for predictors of the aggressiveness of cholesteatoma can affect the timing of intervention and prevent occurrence of complications.

Keyword

Pathogenesis; Bone Resorption; Cholesteatoma; Acquired; Temporal Bone; Cytokines

MeSH Terms

Bone Resorption*
Cholesteatoma*
Cytokines
Temporal Bone
Cytokines

Figure

  • Fig. 1. Methods of papers’ selection in our review.

  • Fig. 2. Left cholesteatomatous otitis media complicated by left lateral canal fistula (arrow).


Reference

1. Olszewska E, Wagner M, Bernal-Sprekelsen M, Ebmeyer J, Dazert S, Hildmann H, et al. Etiopathogenesis of cholesteatoma. Eur Arch Otorhinolaryngol. 2004; Jan. 261(1):6–24.
Article
2. Soldati D, Mudry A. Knowledge about cholesteatoma, from the first description to the modern histopathology. Otol Neurotol. 2001; Nov. 22(6):723–30.
Article
3. Dornelles C, Costa SS, Meurer L, Schweiger C. Some considerations about acquired adult and pediatric cholesteatomas. Braz J Otorhinolaryngol. 2005; Jul-Aug. 71(4):536–45.
Article
4. Kuo CL. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope. 2015; Jan. 125(1):234–40.
Article
5. Kuo CL, Shiao AS, Yung M, Sakagami M, Sudhoff H, Wang CH, et al. Updates and knowledge gaps in cholesteatoma research. Biomed Res Int. 2015; 2015:854024.
Article
6. Aquino JE, Cruz Filho NA, de Aquino JN. Epidemiology of middle ear and mastoid cholesteatomas: study of 1146 cases. Braz J Otorhinolaryngol. 2011; Jun. 77(3):341–7.
Article
7. Chole RA. The molecular biology of bone resorption due to chronic otitis media. Ann N Y Acad Sci. 1997; Dec. 830:95–109.
Article
8. Louw L. Acquired cholesteatoma: summary of the cascade of molecular events. J Laryngol Otol. 2013; Jun. 127(6):542–9.
Article
9. Albino AP, Kimmelman CP, Parisier SC. Cholesteatoma: a molecular and cellular puzzle. Am J Otol. 1998; Jan. 19(1):7–19.
10. Meyerhoff WL, Truelson J. Cholesteatoma staging. Laryngoscope. 1986; Sep. 96(9 Pt 1):935–9.
Article
11. Friedmann I. The comparative pathology of otitis media, experimental and human. II. The histopathology of experimental otitis of the guinea-pig with particular reference to experimental cholesteatoma. J Laryngol Otol. 1955; Sep. 69(9):588–601.
12. Lepercque S, Broekaert D, Van Cauwenberge P. Cytokeratin expression patterns in the human tympanic membrane and external ear canal. Eur Arch Otorhinolaryngol. 1993; 250(2):78–81.
Article
13. Lee RJ, Mackenzie IC, Hall BK, Gantz BJ. The nature of the epithelium in acquired cholesteatoma. Clin Otolaryngol Allied Sci. 1991; Apr. 16(2):168–73.
Article
14. Imamura S, Nozawa I, Imamura M, Murakami Y. Pathogenesis of experimental aural cholesteatoma in the chinchilla. ORL J Otorhinolaryngol Relat Spec. 1999; Mar-Apr. 61(2):84–91.
Article
15. Persaud R, Hajioff D, Trinidade A, Khemani S, Bhattacharyya MN, Papadimitriou N, et al. Evidence-based review of aetiopathogenic theories of congenital and acquired cholesteatoma. J Laryngol Otol. 2007; Nov. 121(11):1013–9.
Article
16. Kuijpers W, Vennix PP, Peters TA, Ramaekers FC. Squamous metaplasia of the middle ear epithelium. Acta Otolaryngol. 1996; Mar. 116(2):293–8.
Article
17. Akyildiz N, Akbay C, Ozgirgin ON, Bayramoglu I, Sayin N. The role of retraction pockets in cholesteatoma development: an ultrastructural study. Ear Nose Throat J. 1993; Mar. 72(3):210–2.
Article
18. Chole RA, Tinling SP. Basal lamina breaks in the histogenesis of cholesteatoma. Laryngoscope. 1985; Mar. 95(3):270–5.
Article
19. Sudhoff H, Bujia J, Borkowshi G, Koc C, Holly A, Hildmann H, et al. Basement membrane in middle ear cholesteatoma: immunohistochemical and ultrastructural observations. Ann Otol Rhinol Laryngol. 1996; Oct. 105(10):804–10.
Article
20. Sudhoff H, Linthicum FH Jr. Cholesteatoma behind an intact tympanic membrane: histopathologic evidence for a tympanic membrane origin. Otol Neurotol. 2001; Jul. 22(4):444–6.
Article
21. Magnan J, Chays A, Bremond G, De Micco C, Lebreuil G. Anatomopathology of cholesteatoma. Acta Otorhinolaryngol Belg. 1991; 45(1):27–34.
22. Kim CS, Chung JW. Morphologic and biologic changes of experimentally induced cholesteatoma in Mongolian gerbils with anticytokeratin and lectin study. Am J Otol. 1999; Jan. 20(1):13–8.
23. Jackler RK, Santa Maria PL, Varsak YK, Nguyen A, Blevins NH. A new theory on the pathogenesis of acquired cholesteatoma: mucosal traction. Laryngoscope. 2015; Aug. 125 Suppl 4:S1–14.
Article
24. Wullstein HL, Wullstein SR. Cholesteatoma: etiology, nosology and tympanoplasty. ORL J Otorhinolaryngol Relat Spec. 1980; 42(6):313–35.
25. McKennan KX, Chole RA. Post-traumatic cholesteatoma. Laryngoscope. 1989; Aug. 99(8 Pt 1):779–82.
Article
26. Falk B, Magnuson B. Evacuation of the middle ear by sniffing: a cause of high negative pressure and development of middle ear disease. Otolaryngol Head Neck Surg. 1984; Jun. 92(3):312–8.
Article
27. Magnuson B, Falk B. Eustachian tube malfunction and middle ear disease in new perspective. J Otolaryngol. 1983; Jun. 12(3):187–93.
28. Lindeman P, Holmquist J. Mastoid volume and eustachian tube function in ears with cholesteatoma. Am J Otol. 1987; Jan. 8(1):5–7.
29. Wolfman DE, Chole RA. Osteoclast stimulation by positive middle-ear air pressure. Arch Otolaryngol Head Neck Surg. 1986; Oct. 112(10):1037–42.
Article
30. Dominguez S, Harker LA. Incidence of cholesteatoma with cleft palate. Ann Otol Rhinol Laryngol. 1988; Nov-Dec. 97(6 Pt 1):659–60.
Article
31. Hornigold R, Morley A, Glore RJ, Boorman J, Sergeant R. The long-term effect of unilateral t-tube insertion in patients undergoing cleft palate repair: 20-year follow-up of a randomised controlled trial. Clin Otolaryngol. 2008; Jun. 33(3):265–8.
Article
32. Spilsbury K, Ha JF, Semmens JB, Lannigan F. Cholesteatoma in cleft lip and palate: a population-based follow-up study of children after ventilation tubes. Laryngoscope. 2013; Aug. 123(8):2024–9.
Article
33. Coker NJ, Jenkins HA, Fisch U. Obliteration of the middle ear and mastoid cleft in subtotal petrosectomy: indications, technique, and results. Ann Otol Rhinol Laryngol. 1986; Jan-Feb. 95(1 Pt 1):5–11.
Article
34. Roland NJ, Phillips DE, Rogers JH, Singh SD. The use of ventilation tubes and the incidence of cholesteatoma surgery in the paediatric population of Liverpool. Clin Otolaryngol Allied Sci. 1992; Oct. 17(5):437–9.
Article
35. Marchioni D, Alicandri-Ciufelli M, Molteni G, Artioli FL, Genovese E, Presutti L. Selective epitympanic dysventilation syndrome. Laryngoscope. 2010; May. 120(5):1028–33.
Article
36. Marchioni D, Grammatica A, Alicandri-Ciufelli M, Aggazzotti-Cavazza E, Genovese E, Presutti L. The contribution of selective dysventilation to attical middle ear pathology. Med Hypotheses. 2011; Jul. 77(1):116–20.
Article
37. Marchioni D, Mattioli F, Alicandri-Ciufelli M, Presutti L. Prevalence of ventilation blockages in patients affected by attic pathology: a case-control study. Laryngoscope. 2013; Nov. 123(11):2845–53.
Article
38. Palva T, Ramsay H. Incudal folds and epitympanic aeration. Am J Otol. 1996; Sep. 17(5):700–8.
39. Palva T, Ramsay H, Bohling T. Tensor fold and anterior epitympanum. Am J Otol. 1997; May. 18(3):307–16.
40. Huisman MA, de Heer E, Ten Dijke P, Grote JJ. Transforming growth factor beta and wound healing in human cholesteatoma. Laryngoscope. 2008; Jan. 118(1):94–8.
41. Sudhoff H, Tos M. Pathogenesis of attic cholesteatoma: clinical and immunohistochemical support for combination of retraction theory and proliferation theory. Am J Otol. 2000; Nov. 21(6):786–92.
42. Lim DJ, Saunders WH. Acquired cholesteatoma: light and electron microscopic observations. Ann Otol Rhinol Laryngol. 1972; Feb. 81(1):1–11.
43. Alves AL, Pereira CS, Ribeiro Fde A, Fregnani JH. Analysis of histopathological aspects in acquired middle ear cholesteatoma. Braz J Otorhinolaryngol. 2008; Nov-Dec. 74(6):835–41.
Article
44. Dornelles C, Meurer L, Selaimen da Costa S, Schweiger C. Histologic description of acquired cholesteatomas: comparison between children and adults. Braz J Otorhinolaryngol. 2006; Sep-Oct. 72(5):641–8.
Article
45. Sade J, Halevy A. The aetiology of bone destruction in chronic otitis media. J Laryngol Otol. 1974; Feb. 88(2):139–43.
46. Bretlau P, Sorensen CH, Jorgensen MB, Dabelsteen E. Bone resorption in human cholesteatomas. Ann Otol Rhinol Laryngol. 1982; Mar-Apr. 91(2 Pt 1):131–5.
Article
47. Kurihara A, Toshima M, Yuasa R, Takasaka T. Bone destruction mechanisms in chronic otitis media with cholesteatoma: specific production by cholesteatoma tissue in culture of bone-resorbing activity attributable to interleukin-1 alpha. Ann Otol Rhinol Laryngol. 1991; Dec. 100(12):989–98.
Article
48. Jung JY, Chole RA. Bone resorption in chronic otitis media: the role of the osteoclast. ORL J Otorhinolaryngol Relat Spec. 2002; Mar-Apr. 64(2):95–107.
Article
49. Maranhao A, Andrade J, Godofredo V, Matos R, Penido N. Epidemiology of intratemporal complications of otitis media. Int Arch Otorhinolaryngol. 2014; Apr. 18(2):178–83.
50. Chole RA, McGinn MD, Tinling SP. Pressure-induced bone resorption in the middle ear. Ann Otol Rhinol Laryngol. 1985; Mar-Apr. 94(2 Pt 1):165–70.
Article
51. McGinn MD, Chole RA, Tinling SP. Bone resorption induced by middle-ear implants. Arch Otolaryngol Head Neck Surg. 1986; Jun. 112(6):635–41.
Article
52. Orisek BS, Chole RA. Pressures exerted by experimental cholesteatomas. Arch Otolaryngol Head Neck Surg. 1987; Apr. 113(4):386–91.
Article
53. Huang CC, Yi ZX, Yuan QG, Abramson M. A morphometric study of the effects of pressure on bone resorption in the middle ear of rats. Am J Otol. 1990; Jan. 11(1):39–43.
54. Kaneko Y, Yuasa R, Ise I, Iino Y, Shinkawa H, Rokugo M, et al. Bone destruction due to the rupture of a cholesteatoma sac: a pathogenesis of bone destruction in aural-cholesteatoma. Laryngoscope. 1980; Nov. 90(11 Pt 1):1865–71.
55. Nguyen KH, Suzuki H, Ohbuchi T, Wakasugi T, Koizumi H, Hashida K, et al. Possible participation of acidic pH in bone resorption in middle ear cholesteatoma. Laryngoscope. 2014; Jan. 124(1):245–50.
Article
56. Chen ZF, Darvell BW, Leung VW. Hydroxyapatite solubility in simple inorganic solutions. Arch Oral Biol. 2004; May. 49(5):359–67.
Article
57. Saunders J, Murray M, Alleman A. Biofilms in chronic suppurative otitis media and cholesteatoma: scanning electron microscopy findings. Am J Otolaryngol. 2011; Jan-Feb. 32(1):32–7.
Article
58. Gu X, Keyoumu Y, Long L, Zhang H. Detection of bacterial biofilms in different types of chronic otitis media. Eur Arch Otorhinolaryngol. 2014; Nov. 271(11):2877–83.
Article
59. Chole RA, Faddis BT. Evidence for microbial biofilms in cholesteatomas. Arch Otolaryngol Head Neck Surg. 2002; Oct. 128(10):1129–33.
Article
60. Lampikoski H, Aarnisalo AA, Jero J, Kinnari TJ. Mastoid biofilm in chronic otitis media. Otol Neurotol. 2012; Jul. 33(5):785–8.
Article
61. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990; 8:253–78.
Article
62. Yellon RF, Leonard G, Marucha PT, Craven R, Carpenter RJ, Lehmann WB, et al. Characterization of cytokines present in middle ear effusions. Laryngoscope. 1991; Feb. 101(2):165–9.
Article
63. Peek FA, Huisman MA, Berckmans RJ, Sturk A, Van Loon J, Grote JJ. Lipopolysaccharide concentration and bone resorption in cholesteatoma. Otol Neurotol. 2003; Sep. 24(5):709–13.
Article
64. Ricciardiello F, Cavaliere M, Mesolella M, Iengo M. Notes on the microbiology of cholesteatoma: clinical findings and treatment. Acta Otorhinolaryngol Ital. 2009; Aug. 29(4):197–202.
65. Nason R, Jung JY, Chole RA. Lipopolysaccharide-induced osteoclastogenesis from mononuclear precursors: a mechanism for osteolysis in chronic otitis. J Assoc Res Otolaryngol. 2009; Jun. 10(2):151–60.
Article
66. Jung JY, Lee DH, Wang EW, Nason R, Sinnwell TM, Vogel JP, et al. P. aeruginosa infection increases morbidity in experimental cholesteatomas. Laryngoscope. 2011; Nov. 121(11):2449–54.
Article
67. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008; May. 473(2):139–46.
Article
68. Jeong JH, Park CW, Tae K, Lee SH, Shin DH, Kim KR, et al. Expression of RANKL and OPG in middle ear cholesteatoma tissue. Laryngoscope. 2006; Jul. 116(7):1180–4.
Article
69. Sohn SJ. Substance P upregulates osteoclastogenesis by activating nuclear factor kappa B in osteoclast precursors. Acta Otolaryngol. 2005; Feb. 125(2):130–3.
Article
70. Sherman BE, Chole RA. A mechanism for sympathectomy-induced bone resorption in the middle ear. Otolaryngol Head Neck Surg. 1995; Nov. 113(5):569–81.
71. Jung JY, Lin AC, Ramos LM, Faddis BT, Chole RA. Nitric oxide synthase I mediates osteoclast activity in vitro and in vivo. J Cell Biochem. 2003; Jun. 89(3):613–21.
Article
72. Jung JY, Pashia ME, Nishimoto SY, Faddis BT, Chole RA. A possible role for nitric oxide in osteoclastogenesis associated with cholesteatoma. Otol Neurotol. 2004; Sep. 25(5):661–8.
Article
73. Abramson M, Huang CC. Localization of collagenase in human middle ear cholesteatoma. Laryngoscope. 1977; May. 87(5 Pt 1):771–91.
Article
74. Moriyama H, Honda Y, Huang CC, Abramson M. Bone resorption in cholesteatoma: epithelial-mesenchymal cell interaction and collagenase production. Laryngoscope. 1987; Jul. 97(7 Pt 1):854–9.
75. Lazarus GS, Jensen PJ. Plasminogen activators in epithelial biology. Semin Thromb Hemost. 1991; Jul. 17(3):210–6.
Article
76. Olszewska E, Borzym-Kluczyk M, Olszewski S, Rogowski M, Zwierz K. Hexosaminidase as a new potential marker for middle ear cholesteatoma. Clin Biochem. 2006; Nov. 39(11):1088–90.
Article
77. Olszewska E, Olszewski S, Borzym-Kluczyk M, Zwierz K. Role of N-acetyl-beta-d-hexosaminidase in cholesteatoma tissue. Acta Biochim Pol. 2007; 54(2):365–70.
Article
78. Olszewska E, Jakimowicz-Rudy J, Knas M, Chilimoniuk M, Pietruski JK, Sieskiewicz A. Cholesteatoma-associated pathogenicity: potential role of lysosomal exoglycosidases. Otol Neurotol. 2012; Jun. 33(4):596–603.
79. Hansen T, Unger RE, Gaumann A, Hundorf I, Maurer J, Kirkpatrick CJ, et al. Expression of matrix-degrading cysteine proteinase cathepsin K in cholesteatoma. Mod Pathol. 2001; Dec. 14(12):1226–31.
Article
80. Sikka K, Sharma SC, Thakar A, Dattagupta S. Evaluation of epithelial proliferation in paediatric and adult cholesteatomas using the Ki-67 proliferation marker. J Laryngol Otol. 2012; May. 126(5):460–3.
Article
81. Hamajima Y, Komori M, Preciado DA, Choo DI, Moribe K, Murakami S, et al. The role of inhibitor of DNA-binding (Id1) in hyperproliferation of keratinocytes: the pathological basis for middle ear cholesteatoma from chronic otitis media. Cell Prolif. 2010; Oct. 43(5):457–63.
Article
82. Mallet Y, Nouwen J, Lecomte-Houcke M, Desaulty A. Aggressiveness and quantification of epithelial proliferation of middle ear cholesteatoma by MIB1. Laryngoscope. 2003; Feb. 113(2):328–31.
Article
83. Macias MP, Gerkin RD, Macias JD. Increased amphiregulin expression as a biomarker of cholesteatoma activity. Laryngoscope. 2010; Nov. 120(11):2258–63.
Article
84. Bujía J, Schilling V, Holly A, Stammberger M, Kastenbauer E. Hyperproliferation-associated keratin expression in human middle ear cholesteatoma. Acta Otolaryngol. 1993; May. 113(3):364–8.
Article
85. Schulz P, Bujía J, Holly A, Shilling V, Kastenbauer E. Possible autocrine growth stimulation of cholesteatoma epithelium by transforming growth factor alpha. Am J Otolaryngol. 1993; Mar-Apr. 14(2):82–7.
Article
86. Bujia J, Sudhoff H, Holly A, Hildmann H, Kastenbauer E. Immunohistochemical detection of proliferating cell nuclear antigen in middle ear cholesteatoma. Eur Arch Otorhinolaryngol. 1996; 253(1-2):21–4.
Article
87. Ergun S, Zheng X, Carlsoo B. Expression of transforming growth factor-alpha and epidermal growth factor receptor in middle ear cholesteatoma. Am J Otol. 1996; May. 17(3):393–6.
88. Kojima H, Tanaka Y, Tanaka T, Miyazaki H, Shiwa M, Kamide Y, et al. Cell proliferation and apoptosis in human middle ear cholesteatoma. Arch Otolaryngol Head Neck Surg. 1998; Mar. 124(3):261–4.
Article
89. Shiwa M, Kojima H, Moriyama H. Expression of transforming growth factor-alpha (TGF-alpha) in cholesteatoma. J Laryngol Otol. 1998; Aug. 112(8):750–4.
90. Kuczkowski J, Pawelczyk T, Bakowska A, Narozny W, Mikaszewski B. Expression patterns of Ki-67 and telomerase activity in middle ear cholesteatoma. Otol Neurotol. 2007; Feb. 28(2):204–7.
Article
91. Chae SW, Song JJ, Suh HK, Jung HH, Lim HH, Hwang SJ. Expression patterns of p27Kip1 and Ki-67 in cholesteatoma epithelium. Laryngoscope. 2000; Nov. 110(11):1898–901.
92. Yamamoto-Fukuda T, Takahashi H, Terakado M, Hishikawa Y, Koji T. Expression of keratinocyte growth factor and its receptor in non-cholesteatomatous and cholesteatomatous chronic otitis media. Otol Neurotol. 2010; Jul. 31(5):745–51.
Article
93. Barbara M, Raffa S, Mure C, Manni V, Ronchetti F, Monini S, et al. Keratinocyte growth factor receptor (KGF-R) in cholesteatoma tissue. Acta Otolaryngol. 2008; Apr. 128(4):360–4.
Article
94. Lee SH, Jang YH, Tae K, Park YW, Kang MJ, Kim KR, et al. Telomerase activity and cell proliferation index in cholesteatoma. Acta Otolaryngol. 2005; Jul. 125(7):707–12.
95. Kim CS, Lee CH, Chung JW, Kim CD. Interleukin-1 alpha, interleukin-1 beta and interleukin-8 gene expression in human aural cholesteatomas. Acta Otolaryngol. 1996; Mar. 116(2):302–6.
96. Jung TT, Juhn SK. Prostaglandins in human cholesteatoma and granulation tissue. Am J Otol. 1988; May. 9(3):197–200.
97. Sugita T, Huang CC, Abramson M. The effect of endotoxin and prostaglandin E2 on the proliferation of keratinocytes in vitro. Arch Otorhinolaryngol. 1986; 243(3):211–4.
Article
98. Ahn JM, Huang CC, Abramson M. Localization of interleukin-1 in human cholesteatoma. Am J Otolaryngol. 1990; Mar-Apr. 11(2):71–7.
Article
99. Yan SD, Huang CC. Tumor necrosis factor alpha in middle ear cholesteatoma and its effect on keratinocytes in vitro. Ann Otol Rhinol Laryngol. 1991; Feb. 100(2):157–61.
Article
100. Kakiuchi H, Kinoshita K, Katoh Y, Tabata T. Interleukin-1 of cholesteatomatous keratinocytes. Ann Otol Rhinol Laryngol Suppl. 1992; Oct. 157:32–8.
Article
101. Schilling V, Negri B, Bujia J, Schulz P, Kastenbauer E. Possible role of interleukin 1 alpha and interleukin 1 beta in the pathogenesis of cholesteatoma of the middle ear. Am J Otol. 1992; Jul. 13(4):350–5.
102. Shiwa M, Kojima H, Kamide Y, Moriyama H. Involvement of interleukin-1 in middle ear cholesteatoma. Am J Otolaryngol. 1995; Sep-Oct. 16(5):319–24.
Article
103. Sastry KV, Sharma SC, Mann SB, Ganguly NK, Panda NK. Aural cholesteatoma: role of tumor necrosis factor-alpha in bone destruction. Am J Otol. 1999; Mar. 20(2):158–61.
104. Shibosawa E, Tsutsumi K, Takakuwa T, Takahashi S. Stromal expression of matrix metalloprotease-9 in middle ear cholesteatomas. Am J Otol. 2000; Sep. 21(5):621–4.
105. Schmidt M, Grunsfelder P, Hoppe F. Up-regulation of matrix metalloprotease-9 in middle ear cholesteatoma: correlations with growth factor expression in vivo? Eur Arch Otorhinolaryngol. 2001; Nov. 258(9):472–6.
106. Yetiser S, Satar B, Aydin N. Expression of epidermal growth factor, tumor necrosis factor-alpha, and interleukin-1alpha in chronic otitis media with or without cholesteatoma. Otol Neurotol. 2002; Sep. 23(5):647–52.
107. Morales DS, Penido Nde O, da Silva ID, Stavale JN, Guilherme A, Fukuda Y. Matrix metalloproteinase 2: an important genetic marker for cholesteatomas. Braz J Otorhinolaryngol. 2007; Jan-Feb. 73(1):51–7.
108. Vitale RF, Ribeiro Fde A. The role of tumor necrosis factor-alpha (TNF-alpha) in bone resorption present in middle ear cholesteatoma. Braz J Otorhinolaryngol. 2007; Jan-Feb. 73(1):117–21.
109. Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, Sausen NJ, et al. The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol. 2008; Sep. 1(3):117–38.
Article
110. Suchozebrska-Jesionek D, Szymanski M, Kurzepa J, Golabek W, Stryjecka-Zimmer M. Gelatinolytic activity of matrix metalloproteinases 2 and 9 in middle ear cholesteatoma. J Otolaryngol Head Neck Surg. 2008; Oct. 37(5):628–32.
111. Juhasz A, Sziklai I, Rakosy Z, Ecsedi S, Adany R, Balazs M. Elevated level of tenascin and matrix metalloproteinase 9 correlates with the bone destruction capacity of cholesteatomas. Otol Neurotol. 2009; Jun. 30(4):559–65.
112. Kuczkowski J, Sakowicz-Burkiewicz M, Izycka-Swieszewska E, Mikaszewski B, Pawelczyk T. Expression of tumor necrosis factor-α, interleukin-1α, interleukin-6 and interleukin-10 in chronic otitis media with bone osteolysis. ORL J Otorhinolaryngol Relat Spec. 2011; 73(2):93–9.
Article
113. Vitale RF, Pereira CS, Alves AL, Fregnani JH, Ribeiro FQ. TNF-R2 expression in acquired middle ear cholesteatoma. Braz J Otorhinolaryngol. 2011; Jul-Aug. 77(4):531–6.
Article
114. Rezende CE, Souto RP, Rapoport PB, Campos Ld, Generato MB. Cholesteatoma gene expression of matrix metalloproteinases and their inhibitors by RT-PCR. Braz J Otorhinolaryngol. 2012; Jun. 78(3):116–21.
115. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986; Feb. 319(6053):516–8.
Article
116. Yan SD, Huang CC. The role of tumor necrosis factor-alpha in bone resorption of cholesteatoma. Am J Otolaryngol. 1991; Mar-Apr. 12(2):83–9.
Article
117. Iino Y, Toriyama M, Ogawa H, Kawakami M. Cholesteatoma debris as an activator of human monocytes: potentiation of the production of tumor necrosis factor. Acta Otolaryngol. 1990; Nov-Dec. 110(5-6):410–5.
Article
118. Postlethwaite AE, Lachman LB, Mainardi CL, Kang AH. Interleukin 1 stimulation of collagenase production by cultured fibroblasts. J Exp Med. 1983; Feb. 157(2):801–6.
Article
119. Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res. 2001; Mar. 61(5):2276–81.
120. Sudhoff H, Dazert S, Gonzales AM, Borkowski G, Park SY, Baird A, et al. Angiogenesis and angiogenic growth factors in middle ear cholesteatoma. Am J Otol. 2000; Nov. 21(6):793–8.
121. Fujioka O, Huang CC. Platelet-derived growth factor in middle ear cholesteatoma. Eur Arch Otorhinolaryngol. 1994; 251(4):199–204.
Article
122. Huang T, Yan SD, Huang CC. Colony-stimulating factor in middle ear cholesteatoma. Am J Otolaryngol. 1989; Nov-Dec. 10(6):393–8.
Article
123. Schmidt M, Schler G, Gruensfelder P, Hoppe F. Expression of bone morphogenetic protein-2 messenger ribonucleic acid in cholesteatoma fibroblasts. Otol Neurotol. 2002; May. 23(3):267–70.
Article
124. Oger M, Alpay HC, Orhan I, Onalan EE, Yanilmaz M, Sapmaz E. The effect of BMP-2, BMP-4 and BMP-6 on bone destruction of cholesteatoma presence. Am J Otolaryngol. 2013; Nov-Dec. 34(6):652–7.
Article
125. Sheikholeslam-Zadeh R, Decaestecker C, Delbrouck C, Danguy A, Salmon I, Zick Y, et al. The levels of expression of galectin-3, but not of galectin-1 and galectin-8, correlate with apoptosis in human cholesteatomas. Laryngoscope. 2001; Jun. 111(6):1042–7.
Article
126. Olszewska E, Chodynicki S, Chyczewski L. Apoptosis in the pathogenesis of cholesteatoma in adults. Eur Arch Otorhinolaryngol. 2006; May. 263(5):409–13.
Article
127. Chung JH, Lee SH, Park CW, Kim KR, Tae K, Kang SH, et al. Expression of Apoptotic vs Antiapoptotic Proteins in Middle Ear Cholesteatoma. Otolaryngol Head Neck Surg. 2015; Dec. 153(6):1024–30.
Article
128. Zhang W, Chen X, Qin Z. MicroRNA let-7a suppresses the growth and invasion of cholesteatoma keratinocytes. Mol Med Rep. 2015; Mar. 11(3):2097–103.
Article
129. Chole RA. Cellular and subcellular events of bone resorption in human and experimental cholesteatoma: the role of osteoclasts. Laryngoscope. 1984; Jan. 94(1):76–95.
Article
130. Hamzei M, Ventriglia G, Hagnia M, Antonopolous A, Bernal-Sprekelsen M, Dazert S, et al. Osteoclast stimulating and differentiating factors in human cholesteatoma. Laryngoscope. 2003; Mar. 113(3):436–42.
Article
131. Cheshire IM, Blight A, Ratcliffe WA, Proops DW, Heath DA. Production of parathyroid-hormone-related protein by cholesteatoma cells in culture. Lancet. 1991; Oct. 338(8774):1041–3.
Article
132. Berger G, Hawke M, Ekem JK. Bone resorption in chronic otitis media: the role of mast cells. Acta Otolaryngol. 1985; Jul-Aug. 100(1-2):72–80.
Article
133. Schilling V, Bujia J, Negri B, Schulz P, Kastenbauer E. Immunologically activated cells in aural cholesteatoma. Am J Otolaryngol. 1991; Sep-Oct. 12(5):249–53.
Article
134. Hussein MR, Sayed RH, Abu-Dief EE. Immune cell profile in invasive cholesteatomas: preliminary findings. Exp Mol Pathol. 2010; Apr. 88(2):316–23.
Article
135. Szczepanski M, Szyfter W, Jenek R, Wrobel M, Lisewska IM, Zeromski J. Toll-like receptors 2, 3 and 4 (TLR-2, TLR-3 and TLR-4) are expressed in the microenvironment of human acquired cholesteatoma. Eur Arch Otorhinolaryngol. 2006; Jul. 263(7):603–7.
Article
136. Schonermark M, Mester B, Kempf HG, Blaser J, Tschesche H, Lenarz T. Expression of matrix-metalloproteinases and their inhibitors in human cholesteatomas. Acta Otolaryngol. 1996; May. 116(3):451–6.
137. Yoon TH, Lee SH, Park MH, Chung JW, Kim HJ. Inhibition of cholesteatomatous bone resorption with pamidronate disodium. Acta Otolaryngol. 2001; Jan. 121(2):178–81.
138. Sudhoff H, Jung JY, Ebmeyer J, Faddis BT, Hildmann H, Chole RA. Zoledronic acid inhibits osteoclastogenesis in vitro and in a mouse model of inflammatory osteolysis. Ann Otol Rhinol Laryngol. 2003; Sep. 112(9 Pt 1):780–6.
Article
139. Klenke C, Janowski S, Borck D, Widera D, Ebmeyer J, Kalinowski J, et al. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PLoS One. 2012; 7(12):e52718.
Article
140. Macias JD, Gerkin RD, Locke D, Macias MP. Differential gene expression in cholesteatoma by DNA chip analysis. Laryngoscope. 2013; Oct. 123 Suppl S5:S1–21.
Article
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr