Nutr Res Pract.  2011 Oct;5(5):464-470.

Circulating levels of vitamin D, vitamin D receptor polymorphisms, and colorectal adenoma: a meta-analysis

Affiliations
  • 1Department of Food and Nutrition, Sookmyung Women's University, 52 Hyochangwon gil, Yongsan-gu, Seoul 140-742, Korea. junglee@sm.ac.kr

Abstract

Growing evidence suggests an elevated risk for colorectal neoplasia among individuals with low levels of vitamin D, the biological actions of which are mediated by the vitamin D receptor (VDR). To investigate the association among vitamin D status, VDR polymorphisms (FokI, and BsmI), and colorectal adenoma, we conducted a meta-analysis of nine studies of circulating levels of 25-hydroxyvitamin D (25(OH)D) and five studies of FokI or BsmI polymorphisms in relation to colorectal adenomas. Study-specific relative risks (RRs) and 95% confidence intervals (CIs) were pooled using a random-effects model. A total of 3398 colorectal adenomas for 25(OH)D and 1754 colorectal adenomas for VDR were included in the meta-analysis. We identified a significant inverse association between colorectal adenoma (combined RR, 0.93; 95% CI, 0.87-0.98 per 10 ng/mL increase in 25(OH)D levels). When we examined FokI and BsmI polymorphisms in the meta-analysis, we found no association for either FokI (combined RR, 1.00; 95% CI, 0.95-1.06) or BsmI (combined RR, 0.99; 95% CI, 0.93-1.05) in the additive model. These data suggest an inverse association between circulating 25(OH)D levels and colorectal adenoma risk.

Keyword

Colorectal adenoma; 25-hydroxyvitamin D; vitamin D receptor; meta-analysis

MeSH Terms

Adenoma
Receptors, Calcitriol
Vitamin D
Vitamins
Receptors, Calcitriol
Vitamin D
Vitamins

Figure

  • Fig. 1 Study-specific and combined relative risks (RRs) and 95% confidence intervals (CIs) of colorectal adenoma per 10 ng/mL increase in blood 25(OH)D levels. Black circles indicate the study-specific relative risks; horizontal lines represent the 95% CIs. The area of the gray squares reflects the study-specific weights (inverse of the variance). The dashed line represents the combined RR and the diamond represents the 95% CI for the combined RR.

  • Fig. 2 Study-specific and combined relative risks (RRs) and 95% confidence intervals (CIs) for colorectal adenoma according to FokI and BsmI polymorphisms in the additive model. Black circles indicate study-specific odds ratios; horizontal lines represent the 95% CIs. The area of the gray squares reflects the study-specific weights (inverse of the variance). The dashed line represents the combined RR and the diamond represents the 95% CI for the combined RR.


Reference

1. Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis. Ann N Y Acad Sci. 2001. 952:73–87.
Article
2. Fraser DR. Biochemical and clinical aspects of vitamin D function. Br Med Bull. 1981. 37:37–42.
Article
3. Tangpricha V, Flanagan JN, Whitlatch LW, Tseng CC, Chen TC, Holt PR, Lipkin MS, Holick MF. 25-hydroxyvitamin D-1alpha-hydroxylase in normal and malignant colon tissue. Lancet. 2001. 357:1673–1674.
4. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O'Malley BW. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A. 1988. 85:3294–3298.
Article
5. Slattery ML. Vitamin D receptor gene (VDR) associations with cancer. Nutr Rev. 2007. 65:S102–S104.
Article
6. Raimondi S, Johansson H, Maisonneuve P, Gandini S. Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis. 2009. 30:1170–1180.
Article
7. Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res. 1997. 12:915–921.
Article
8. Cooper GS, Umbach DM. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res. 1996. 11:1841–1849.
Article
9. Habuchi T, Suzuki T, Sasaki R, Wang L, Sato K, Satoh S, Akao T, Tsuchiya N, Shimoda N, Wada Y, Koizumi A, Chihara J, Ogawa O, Kato T. Association of vitamin D receptor gene polymorphism with prostate cancer and benign prostatic hyperplasia in a Japanese population. Cancer Res. 2000. 60:305–308.
10. Giovannucci E. The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control. 2005. 16:83–95.
Article
11. Fedirko V, Bostick RM, Goodman M, Flanders WD, Gross MD. Blood 25-hydroxyvitamin D3 concentrations and incident sporadic colorectal adenoma risk: a pooled case-control study. Am J Epidemiol. 2010. 172:489–500.
Article
12. Jacobs ET, Alberts DS, Benuzillo J, Hollis BW, Thompson PA, Martínez ME. Serum 25(OH)D levels, dietary intake of vitamin D, and colorectal adenoma recurrence. J Steroid Biochem Mol Biol. 2007. 103:752–756.
Article
13. Platz EA, Hankinson SE, Hollis BW, Colditz GA, Hunter DJ, Speizer FE, Giovannucci E. Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and adenomatous polyps of the distal colorectum. Cancer Epidemiol Biomarkers Prev. 2000. 9:1059–1065.
14. Peters U, Hayes RB, Chatterjee N, Shao W, Schoen RE, Pinsky P, Hollis BW, McGlynn KA. Prostate, Lung, Colorectal and Ovarian Cancer Screening Project Team. Circulating vitamin D metabolites, polymorphism in vitamin D receptor, and colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2004. 13:546–552.
15. Peters U, McGlynn KA, Chatterjee N, Gunter E, Garcia-Closas M, Rothman N, Sinha R. Vitamin D, calcium, and vitamin D receptor polymorphism in colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 2001. 10:1267–1274.
16. Grau MV, Baron JA, Sandler RS, Haile RW, Beach ML, Church TR, Heber D. Vitamin D, calcium supplementation, and colorectal adenomas: results of a randomized trial. J Natl Cancer Inst. 2003. 95:1765–1771.
Article
17. Levine AJ, Harper JM, Ervin CM, Chen YH, Harmon E, Xue S, Lee ER, Frankel HD, Haile RW. Serum 25-hydroxyvitamin D, dietary calcium intake, and distal colorectal adenoma risk. Nutr Cancer. 2001. 39:35–41.
Article
18. Takahashi R, Mizoue T, Otake T, Fukumoto J, Tajima O, Tabata S, Abe H, Ohnaka K, Kono S. Circulating vitamin D and colorectal adenomas in Japanese men. Cancer Sci. 2010. 101:1695–1700.
Article
19. Miller EA, Keku TO, Satia JA, Martin CF, Galanko JA, Sandler RS. Calcium, dietary, and lifestyle factors in the prevention of colorectal adenomas. Cancer. 2007. 109:510–517.
Article
20. Kim HS, Newcomb PA, Ulrich CM, Keener CL, Bigler J, Farin FM, Bostick RM, Potter JD. Vitamin D receptor polymorphism and the risk of colorectal adenomas: evidence of interaction with dietary vitamin D and calcium. Cancer Epidemiol Biomarkers Prev. 2001. 10:869–874.
21. Ingles SA, Wang J, Coetzee GA, Lee ER, Frankl HD, Haile RW. Vitamin D receptor polymorphisms and risk of colorectal adenomas (United States). Cancer Causes Control. 2001. 12:607–614.
22. Boyapati SM, Bostick RM, McGlynn KA, Fina MF, Roufail WM, Geisinger KR, Wargovich M, Coker A, Hebert JR. Calcium, vitamin D, and risk for colorectal adenoma: dependency on vitamin D receptor BsmI polymorphism and nonsteroidal anti-inflammatory drug use? Cancer Epidemiol Biomarkers Prev. 2003. 12:631–637.
23. Hubner RA, Muir KR, Liu JF, Logan RF, Grainge MJ, Houlston RS. Members of UKCAP Consortium. Dairy products, polymorphisms in the vitamin D receptor gene and colorectal adenoma recurrence. Int J Cancer. 2008. 123:586–593.
Article
24. Egan JB, Thompson PA, Ashbeck EL, Conti DV, Duggan D, Hibler E, Jurutka PW, Leroy EC, Martinez ME, Mount D, Jacobs ET. Genetic polymorphisms in vitamin D receptor VDR/RXRA influence the likelihood of colon adenoma recurrence. Cancer Res. 2010. 70:1496–1504.
Article
25. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992. 135:1301–1309.
Article
26. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2006. 6:40–57.
Article
27. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986. 7:177–188.
Article
28. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997. 315:629–634.
Article
29. Iseki K, Tatsuta M, Uehara H, Iishi H, Yano H, Sakai N, Ishiguro S. Inhibition of angiogenesis as a mechanism for inhibition by 1alpha-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 of colon carcinogenesis induced by azoxymethane in Wistar rats. Int J Cancer. 1999. 81:730–733.
Article
30. Sundaram S, Sea A, Feldman S, Strawbridge R, Hoopes PJ, Demidenko E, Binderup L, Gewirtz DA. The combination of a potent vitamin D3 analog, EB 1089, with ionizing radiation reduces tumor growth and induces apoptosis of MCF-7 breast tumor xenografts in nude mice. Clin Cancer Res. 2003. 9:2350–2356.
31. Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol. 1980. 9:227–231.
Article
32. Lee JE, Li H, Chan AT, Hollis BW, Lee IM, Stampfer MJ, Wu K, Giovannucci E, Ma J. Circulating levels of vitamin D and colon and rectal cancer: the Physicians Health Study and a meta-analysis of prospective studies. Cancer Prev Res (Phila). 2011. 4:735–743.
Article
33. Wei MY, Garland CF, Gorham ED, Mohr SB, Giovannucci E. Vitamin D and prevention of colorectal adenoma: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2008. 17:2958–2969.
Article
34. Bostick RM, Potter JD, Sellers TA, McKenzie DR, Kushi LH, Folsom AR. Relation of calcium, vitamin D, and dairy food intake to incidence of colon cancer among older women. The Iowa Women's Health Study. Am J Epidemiol. 1993. 137:1302–1317.
Article
35. Kampman E, Slattery ML, Caan B, Potter JD. Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk (United States). Cancer Causes Control. 2000. 11:459–466.
36. Zheng W, Anderson KE, Kushi LH, Sellers TA, Greenstein J, Hong CP, Cerhan JR, Bostick RM, Folsom AR. A prospective cohort study of intake of calcium, vitamin D, and other micronutrients in relation to incidence of rectal cancer among postmenopausal women. Cancer Epidemiol Biomarkers Prev. 1998. 7:221–225.
37. Wu K, Willett WC, Fuchs CS, Colditz GA, Giovannucci EL. Calcium intake and risk of colon cancer in women and men. J Natl Cancer Inst. 2002. 94:437–446.
Article
38. Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM, Kim KJ, Rhee Y, Lim SK. Vitamin D insufficiency in Korea--a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J Clin Endocrinol Metab. 2011. 96:643–651.
Article
39. Calvo MS, Whiting SJ. Prevalence of vitamin D insufficiency in Canada and the United States: importance to health status and efficacy of current food fortification and dietary supplement use. Nutr Rev. 2003. 61:107–113.
Article
40. Norman AW. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology. 2006. 147:5542–5548.
Article
41. Kállay E, Bareis P, Bajna E, Kriwanek S, Bonner E, Toyokuni S, Cross HS. Vitamin D receptor activity and prevention of colonic hyperproliferation and oxidative stress. Food Chem Toxicol. 2002. 40:1191–1196.
Article
42. Flügge J, Krusekopf S, Goldammer M, Osswald E, Terhalle W, Malzahn U, Roots I. Vitamin D receptor haplotypes protect against development of colorectal cancer. Eur J Clin Pharmacol. 2007. 63:997–1005.
Article
43. Poynter JN, Jacobs ET, Figueiredo JC, Lee WH, Conti DV, Campbell PT, Levine AJ, Limburg P, Le Marchand L, Cotterchio M, Newcomb PA, Potter JD, Jenkins MA, Hopper JL, Duggan DJ, Baron JA, Haile RW. Genetic variation in the vitamin D receptor (VDR) and the vitamin D-binding protein (GC) and risk for colorectal cancer: results from the Colon Cancer Family Registry. Cancer Epidemiol Biomarkers Prev. 2010. 19:525–536.
Article
44. Slatter ML, Yakumo K, Hoffman M, Neuhausen S. Variants of the VDR gene and risk of colon cancer (United States). Cancer Causes Control. 2001. 12:359–364.
45. Sweeney C, Curtin K, Murtaugh MA, Caan BJ, Potter JD, Slattery ML. Haplotype analysis of common vitamin D receptor variants and colon and rectal cancers. Cancer Epidemiol Biomarkers Prev. 2006. 15:744–749.
Article
46. Hofmann JN, Yu K, Horst RL, Hayes RB, Purdue MP. Long-term variation in serum 25-hydroxyvitamin D concentration among participants in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cancer Epidemiol Biomarkers Prev. 2010. 19:927–931.
Article
47. Platz EA, Leitzmann MF, Hollis BW, Willett WC, Giovannucci E. Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and subsequent risk of prostate cancer. Cancer Causes Control. 2004. 15:255–265.
Article
48. Alberts DS, Martínez ME, Hess LM, Einspahr JG, Green SB, Bhattacharyya AK, Guillen J, Krutzsch M, Batta AK, Salen G, Fales L, Koonce K, Parish D, Clouser M, Roe D, Lance P. Phoenix and Tucson Gastroenterologist Networks. Phase III trial of ursodeoxycholic acid to prevent colorectal adenoma recurrence. J Natl Cancer Inst. 2005. 97:846–853.
Article
49. Smith-Warner SA, Elmer PJ, Fosdick L, Randall B, Bostick RM, Grandits G, Grambsch P, Louis TA, Wood JR, Potter JD. Fruits, vegetables, and adenomatous polyps: the Minnesota Cancer Prevention Research Unit case-control study. Am J Epidemiol. 2002. 155:1104–1113.
Article
50. Alberts DS, Martínez ME, Roe DJ, Guillén-Rodríguez JM, Marshall JR, van Leeuwen JB, Reid ME, Ritenbaugh C, Vargas PA, Bhattacharyya AB, Earnest DL, Sampliner RE. Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer Prevention Physicians' Network. N Engl J Med. 2000. 342:1156–1162.
Article
Full Text Links
  • NRP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr