Korean J Spine.  2012 Sep;9(3):131-136. 10.14245/kjs.2012.9.3.131.

Finite Element Analysis of the Biomechanical Effect of Coflex(TM) on the Lumbar Spine

Affiliations
  • 1Department of Medical System Engineering and School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Korea. shindongah@me.com
  • 2Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.

Abstract


OBJECTIVE
The biomechanical properties of the Coflex(TM) (Paradigm Spine, NY, USA), a device designed to provide dynamic stabilization without lumbar fusion, have not been clearly defined. The purpose of this study was to determine the efficacy and biomechanical effect of Coflex(TM) using finite element model (FEM).
METHODS
A 3D geometric model of the L3-L5 was created by integrating computerized tomography (CT) images. Based on the geometric model, a 3D FEM was created and the Coflex(TM) model was incorporated into the base model. Mechanical load dependent on the postural changes and boundary conditions, were imposed to simulate various 3D physiological states. The simulation analysis included stress and strain distributions, intervertebral disc deformation, and the range of motion of the facet joint and lumbar spinous process.
RESULTS
Coflex(TM) significantly restrained displacement in extension, lateral bending and compression of joint between the L4-5 as one in the experimental group was observed -1.3% of flexion, -24.5% of extension, -44.5% of lateral bending and -37.2%. The average intradiscal pressure of the L4-5 decreased by 63% and the average facet contract force of the L4-5 decreased markedly by 34% in the experimental group. A load of 120 MPa from extension was observed at the base of spinous process in the experimental group.
CONCLUSION
The Coflex(TM) can be safely used for achieving functional dynamic stabilization of the lumbar vertebral column while preserving the intactness of the other components. However, the fatigue fracture of the L4 spinous process should be carefully monitored.

Keyword

Finite element analysis; Interspinous implant; Spinous process; Lumbar vertebrae

MeSH Terms

Contracts
Displacement (Psychology)
Equipment Design
Finite Element Analysis
Fractures, Stress
Intervertebral Disc
Joints
Lumbar Vertebrae
Range of Motion, Articular
Spine
Sprains and Strains
Zygapophyseal Joint
Full Text Links
  • KJS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr