Immune Netw.  2014 Feb;14(1):7-13. 10.4110/in.2014.14.1.7.

Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry

Affiliations
  • 1Department of Immunology and Molecular Microbiology, Dental research Institute, Seoul National University School of Dentistry, Seoul 110-749, Korea. youngnim@snu.ac.kr

Abstract

Molecular mimicry is an attractive mechanism for triggering autoimmunity. In this review, we explore the potential role of evolutionary conserved bacterial proteins in the production of autoantibodies with focus on granulomatosis with polyangiitis (GPA) and rheumatoid arthritis (RA). Seven autoantigens characterized in GPA and RA were BLASTed against a bacterial protein database. Of the seven autoantigens, proteinase 3, type II collagen, binding immunoglobulin protein, glucose-6-phosphate isomerase, alpha-enolase, and heterogeneous nuclear ribonuclear protein have well-conserved bacterial orthologs. Importantly, those bacterial orthologs are also found in human-associated bacteria. The wide distribution of the highly conserved stress proteins or enzymes among the members of the normal flora and common infectious microorganisms raises a new question on how cross-reactive autoantibodies are not produced during the immune response to these bacteria in most healthy people. Understanding the mechanisms that deselect auto-reactive B cell clones during the germinal center reaction to homologous foreign antigens may provide a novel strategy to treat autoimmune diseases.

Keyword

Molecular mimicry; Autoantigens; Bacterial orthologs; Granulomatosis with polyangiitis; Rheumatoid arthritis

MeSH Terms

Arthritis, Rheumatoid
Autoantibodies
Autoantigens
Autoimmune Diseases*
Autoimmunity
Bacteria
Bacterial Infections*
Bacterial Proteins
Clone Cells
Collagen Type II
Germinal Center
Glucose-6-Phosphate Isomerase
Heat-Shock Proteins
Immunoglobulins
Molecular Mimicry*
Myeloblastin
Phosphopyruvate Hydratase
Autoantibodies
Autoantigens
Bacterial Proteins
Collagen Type II
Glucose-6-Phosphate Isomerase
Heat-Shock Proteins
Immunoglobulins
Myeloblastin
Phosphopyruvate Hydratase

Reference

1. Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med. 1999; 341:2068–2074.
Article
2. Libbey JE, McCoy LL, Fujinami RS. Molecular mimicry in multiple sclerosis. Int Rev Neurobiol. 2007; 79:127–147.
Article
3. Ang CW, Jacobs BC, Laman JD. The Guillain-Barré syndrome: a true case of molecular mimicry. Trends Immunol. 2004; 25:61–66.
Article
4. Guilherme L, Kalil J, Cunningham M. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 2006; 39:31–39.
Article
5. Hu N, Westra J, Kallenberg CG. Membrane-bound proteinase 3 and its receptors: relevance for the pathogenesis of Wegener's Granulomatosis. Autoimmun Rev. 2009; 8:510–514.
Article
6. Chen M, Kallenberg CG. The environment, geoepidemiology and ANCA-associated vasculitides. Autoimmun Rev. 2010; 9:A293–A298.
Article
7. Watts RA, Scott DGI. ANCA vasculitis: to lump or split? Why we should study MPA and GPA separately. Rheumatology (Oxford). 2012; 51:2115–2117.
8. Pinching AJ, Rees AJ, Pussell BA, Lockwood CM, Mitchison RS, Peters DK. Relapses in Wegener's granulomatosis: the role of infection. Br Med J. 1980; 281:836–838.
Article
9. Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med. 1994; 120:12–17.
Article
10. Stegeman CA, Tervaert JW, de Jong PE, Kallenberg CG. Dutch Co-Trimoxazole Wegener Study Group. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's granulomatosis. N Engl J Med. 1996; 335:16–20.
Article
11. Kain R, Exner M, Brandes R, Ziebermayr R, Cunningham D, Alderson CA, Davidovits A, Raab I, Jahn R, Ashour O, Spitzauer S, Sunder-Plassmann G, Fukuda M, Klemm P, Rees AJ, Kerjaschki D. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med. 2008; 14:1088–1096.
Article
12. Kim YC, Shin JE, Lee SH, Chung WJ, Lee YS, Choi BK, Choi Y. Membrane-bound proteinase 3 and PAR2 mediate phagocytosis of non-opsonized bacteria in human neutrophils. Mol Immunol. 2011; 48:1966–1974.
Article
13. Pati A, Sikorski J, Nolan M, Lapidus A, Copeland A, Glavina Del Rio T, Lucas S, Chen F, Tice H, Pitluck S, Cheng JF, Chertkov O, Brettin T, Han C, Detter JC, Kuske C, Bruce D, Goodwin L, Chain P, D'haeseleer P, Chen A, Palaniappan K, Ivanova N, Mavromatis K, Mikhailova N, Rohde M, Tindall BJ, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Saccharomonospora viridis type strain (P101). Stand Genomic Sci. 2009; 1:141–149.
14. Wegner N, Wait R, Venables PJ. Evolutionarily conserved antigens in autoimmune disease: implications for an infective aetiology. Int J Biochem Cell Biol. 2009; 41:390–397.
Article
15. Artandi SE, Calame KL, Morrison SL, Bonagura VR. Monoclonal IgM rheumatoid factors bind IgG at a discontinuous epitope comprised of amino acid loops from heavy-chain constant-region domains 2 and 3. Proc Natl Acad Sci U S A. 1992; 89:94–98.
Article
16. Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest. 1998; 101:273–281.
Article
17. Song YW, Kang EH. Autoantibodies in rheumatoid arthritis: rheumatoid factors and anticitrullinated protein antibodies. QJM. 2010; 103:139–146.
Article
18. Bateman A, Eddy SR, Chothia C. Members of the immunoglobulin superfamily in bacteria. Protein Sci. 1996; 5:1939–1941.
Article
19. Cho YG, Cho ML, Min SY, Kim HY. Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun Rev. 2007; 7:65–70.
Article
20. Sammons JS, Localio R, Xiao R, Coffin SE, Zaoutis T. Clostridium difficile infection is associated with increased risk of death and prolonged hospitalization in children. Clin Infect Dis. 2013; 57:1–8.
Article
21. Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 2010; 23:382–398.
22. Nakajima N, Matsuura Y. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group. Biosci Biotechnol Biochem. 1997; 61:1739–1742.
Article
23. Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988; 22:631–677.
Article
24. Rajaiah R, Moudgil KD. Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmun Rev. 2009; 8:388–393.
Article
25. Schubert D, Maier B, Morawietz L, Krenn V, Kamradt T. Immunization with glucose-6-phosphate isomerase induces T cell-dependent peripheral polyarthritis in genetically unaltered mice. J Immunol. 2004; 172:4503–4509.
Article
26. Fan LY, Zong M, Wang Q, Yang L, Sun LS, Ye Q, Ding YY, Ma JW. Diagnostic value of glucose-6-phosphate isomerase in rheumatoid arthritis. Clin Chim Acta. 2010; 411:2049–2053.
Article
27. Wygrecka M, Marsh LM, Morty RE, Henneke I, Guenther A, Lohmeyer J, Markart P, Preissner KT. Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood. 2009; 113:5588–5598.
Article
28. Pancholi V, Fontan P, Jin H. Plasminogen-mediated group A streptococcal adherence to and pericellular invasion of human pharyngeal cells. Microb Pathog. 2003; 35:293–303.
Article
29. Hoffmann MH, Skriner K, Herman S, Baumann C, Steiner CW, Ospelt C, Meyer B, Gleiss A, Pfatschbache J, Niederreiter B, Tuncel J, Zanoni G, Steiner G. Nucleic acid-stimulated antigen-presenting cells trigger T cells to induce disease in a rat transfer model of inflammatory arthritis. J Autoimmun. 2011; 36:288–300.
Article
30. Prati C, Bertolini E, Toussirot E, Wendling D. Reactive arthritis due to Clostridium difficile. Joint Bone Spine. 2010; 77:190–192.
Article
31. Cuchacovich R, Japa S, Huang WQ, Calvo A, Vega L, Vargas RB, Singh R, Flores D, Castro I, Espinoza LR. Detection of bacterial DNA in Latin American patients with reactive arthritis by polymerase chain reaction and sequencing analysis. J Rheumatol. 2002; 29:1426–1429.
32. Maggi RG, Mozayeni BR, Pultorak EL, Hegarty BC, Bradley JM, Correa M, Breitschwerdt EB. Bartonella spp. bacteremia and rheumatic symptoms in patients from Lyme disease-endemic region. Emerg Infect Dis. 2012; 18:783–791.
33. Hasanoglu I, Guven T, Maras Y, Guner R, Tasyaran MA, Acikgoz ZC. Brucellosis as an aetiology of septic arthritis. Trop Doct. 2013; in press: doi: 10.1177/0049475513512645.
Article
34. Steere AC, Drouin EE, Glickstein LJ. Relationship between immunity to Borrelia burgdorferi outer-surface protein A (OspA) and Lyme arthritis. Clin Infect Dis. 2011; 52:Suppl 3. s259–s265.
Article
35. Chaudhry MA, Scofield RH. Atypical rocky mountain spotted Fever with polyarticular arthritis. Am J Med Sci. 2013; 346:427–429.
Article
36. Leo JC, Skurnik M. Adhesins of human pathogens from the genus Yersinia. Adv Exp Med Biol. 2011; 715:1–15.
Article
37. Bonet Llorach M, Arnam Fernandez D, Valles Daunis J, Maymo Guarch J, Carbonell Abelló H. Haemophilus influenza septic arthritis in the adult. Clin Rheumatol. 1989; 8:292–293.
38. Acar JF. Serratia marcescens infections. Infect Control. 1986; 7:273–278.
39. Yeoh N, Burton JP, Suppiah P, Reid G, Stebbings S. The role of the microbiome in rheumatic diseases. Curr Rheumatol Rep. 2013; 15:314.
Article
Full Text Links
  • IN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr