Korean J Pain.  2025 Apr;38(2):89-102. 10.3344/kjp.24393.

Neuroplasticity in chronic pain: insights into diagnosis and treatment

Affiliations
  • 1Pharmacy Department, College of Pharmacy, Amman Arab University, Amman, Jordan

Abstract

Chronic pain is a universal problem that directly evolves the central nervous system, altering both its structure and function. This review discusses neuroplastic alterations in critical areas in the brain like the anterior cingulate cortex, insula, prefrontal cortex, primary (S1) and secondary (S2) somatosensory cortices, and thalamus. These regions exhibit gray matter decrease and changes in connectivity during chronic pain. Several cortical networks, mainly the central executive network, the default mode network, and the salience network exhibit neuroplasticity which reallocates cognitive and emotional resources to pain processing. Thus, it was reported that sensitivity to pain enhances emotional suffering, indicating that altered connectivity and functional reorganization of these networks support maladaptive pain processing and underpin chronic pain persistence. Neuroplasticity-focused treatments such as brain stimulation, neuro-feedback, and exercise-based therapies constitute potential interventions for preventing such negative changes. Further, innovative neuroimaging biomarkers are effective in demonstrating precise neural changes and in providing information about the diagnosis of chronic pain syndromes. This review highlights neuro-plastic changes in chronically painful patients and acknowledges the brain’s plasticity as a target for chronic pain treatment. It, also, points to the diagnostic strategies and practical interventions that address these alterations.

Keyword

Brain; Central Nervous System; Chronic Pain; Default Mode Network; Gyrus Cinguli; Neuronal Plasticity; Prefrontal Cortex; Somatosensory Cortex; Thalamus

Figure

  • Fig. 1 Pain pathway. PAG: periaqueductal gray, RVM: rostroventromedial medulla, S1: primary, S2: secondary, DRG: dorsal root ganglion.


Reference

1. McCarberg B, Peppin J. 2019; Pain pathways and nervous system plasticity: learning and memory in pain. Pain Med. 20:2421–37. DOI: 10.1093/pm/pnz017. PMID: 30865778.
Article
2. Jaffal S, Khalil R. 2024; Targeting nerve growth factor for pain relief: pros and cons. Korean J Pain. 37:288–98. DOI: 10.3344/kjp.24235. PMID: 39322310. PMCID: PMC11450303.
Article
3. Zhuo M. 2020; Cortical plasticity as synaptic mechanism for chronic pain. J Neural Transm (Vienna). 127:567–73. DOI: 10.1007/s00702-019-02071-3. PMID: 31493094.
Article
4. Bak MS, Park H, Kim SK. 2021; Neural plasticity in the brain during neuropathic pain. Biomedicines. 9:624. DOI: 10.3390/biomedicines9060624. PMID: 34072638. PMCID: PMC8228570.
Article
5. Kourosh-Arami M, Komaki A. 2023; Reciprocal interaction of pain and brain: plasticity-induced pain, pain-induced plasticity, and therapeutic targets. CNS Neurol Disord Drug Targets. 22:1484–92. DOI: 10.2174/1871527322666221102141002. PMID: 36330624.
6. Vergne-Salle P, Bertin P. 2021; Chronic pain and neuroinflammation. Joint Bone Spine. 88:105222. DOI: 10.1016/j.jbspin.2021.105222. PMID: 34022418.
Article
7. Ploner M, Schmitz F, Freund HJ, Schnitzler A. 1999; Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol. 81:3100–4. DOI: 10.1152/jn.1999.81.6.3100. PMID: 10368426.
Article
8. Worthen SF, Hobson AR, Hall SD, Aziz Q, Furlong PL. 2011; Primary and secondary somatosensory cortex responses to anticipation and pain: a magnetoencephalography study. Eur J Neurosci. 33:946–59. DOI: 10.1111/j.1460-9568.2010.07575.x. PMID: 21323764.
Article
9. Zhu X, Huang JY, Dong WY, Tang HD, Xu S, Wu Q, et al. 2024; Somatosensory cortex and central amygdala regulate neuropathic pain-mediated peripheral immune response via vagal projections to the spleen. Nat Neurosci. 27:471–83. DOI: 10.1038/s41593-023-01561-8. PMID: 38291284.
Article
10. Xiong W, Ping X, Ripsch MS, Chavez GSC, Hannon HE, Jiang K, et al. 2017; Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Sci Rep. 7:12743. DOI: 10.1038/s41598-017-12972-6. PMID: 28986567. PMCID: PMC5630599.
Article
11. Woolf CJ, Ma Q. 2007; Nociceptors--noxious stimulus detectors. Neuron. 55:353–64. DOI: 10.1016/j.neuron.2007.07.016. PMID: 17678850.
Article
12. Heinricher MM, Tavares I, Leith JL, Lumb BM. 2009; Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 60:214–25. DOI: 10.1016/j.brainresrev.2008.12.009. PMID: 19146877. PMCID: PMC2894733.
Article
13. Ossipov MH, Morimura K, Porreca F. 2014; Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. 8:143–51. DOI: 10.1097/SPC.0000000000000055. PMID: 24752199. PMCID: PMC4301419.
Article
14. Budai D, Harasawa I, Fields HL. 1998; Midbrain periaqueductal gray (PAG) inhibits nociceptive inputs to sacral dorsal horn nociceptive neurons through alpha2-adrenergic receptors. J Neurophysiol. 80:2244–54. DOI: 10.1152/jn.1998.80.5.2244. PMID: 9819240.
15. Fields HL, Basbaum AI, Heinricher MM. McMahon SB, Koltzenburg M, editors. 2005. Central nervous system mechanisms of pain modulation. In: Wall and Melzack's textbook of pain. 5th ed. Churchill Livingstone;p. 125–42. DOI: 10.1016/B0-443-07287-6/50012-6. PMID: 16683205.
16. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. 2013; An fMRI-based neurologic signature of physical pain. N Engl J Med. 368:1388–97. DOI: 10.1056/NEJMoa1204471. PMID: 23574118. PMCID: PMC3691100.
Article
17. López-Solà M, Pujol J, Monfort J, Deus J, Blanco-Hinojo L, Harrison BJ, et al. 2022; The neurologic pain signature responds to nonsteroidal anti-inflammatory treatment vs placebo in knee osteoarthritis. Pain Rep. 7:e986. DOI: 10.1097/PR9.0000000000000986. PMID: 35187380. PMCID: PMC8853614.
Article
18. Ong WY, Stohler CS, Herr DR. 2019; Role of the prefrontal cortex in pain processing. Mol Neurobiol. 56:1137–66. DOI: 10.1007/s12035-018-1130-9. PMID: 29876878. PMCID: PMC6400876.
Article
19. Zhang Z, Ding X, Zhou Z, Qiu Z, Shi N, Zhou S, et al. 2019; Sirtuin 1 alleviates diabetic neuropathic pain by regulating synaptic plasticity of spinal dorsal horn neurons. Pain. 160:1082–92. DOI: 10.1097/j.pain.0000000000001489. PMID: 30649099.
Article
20. Mascio G, Notartomaso S, Martinello K, Liberatore F, Bucci D, Imbriglio T, et al. 2022; A progressive build-up of perineuronal nets in the somatosensory cortex is associated with the development of chronic pain in mice. J Neurosci. 42:3037–48. DOI: 10.1523/JNEUROSCI.1714-21.2022. PMID: 35193928. PMCID: PMC8985861.
Article
21. Li C, Lei Y, Tian Y, Xu S, Shen X, Wu H, et al. 2019; The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol Pain. 15:1744806919847366. DOI: 10.1177/1744806919847366. PMID: 30977423. PMCID: PMC6509976.
Article
22. Mills EP, Keay KA, Henderson LA. 2021; Brainstem pain-modulation circuitry and its plasticity in neuropathic pain: insights from human brain imaging investigations. Front Pain Res (Lausanne). 2:705345. Erratum in: Front Pain Res (Lausanne) 2021; 2: 812209. DOI: 10.3389/fpain.2021.705345. PMID: 35295481. PMCID: PMC8915745.
Article
23. Ng SK, Urquhart DM, Fitzgerald PB, Cicuttini FM, Kirkovski M, Maller JJ, et al. 2021; Examining resting-state functional connectivity in key hubs of the default mode network in chronic low back pain. Scand J Pain. 21:839–46. DOI: 10.1515/sjpain-2020-0184. PMID: 34378878.
Article
24. Coppola G, Di Renzo A, Petolicchio B, Tinelli E, Di Lorenzo C, Serrao M, et al. 2020; Increased neural connectivity between the hypothalamus and cortical resting-state functional networks in chronic migraine. J Neurol. 267:185–91. DOI: 10.1007/s00415-019-09571-y. PMID: 31606759.
Article
25. Wortinger LA, Endestad T, Melinder AM, Øie MG, Sevenius A, Bruun Wyller V. 2016; Aberrant resting-state functional connectivity in the salience network of adolescent chronic fatigue syndrome. PLoS One. 11:e0159351. DOI: 10.1371/journal.pone.0159351. PMID: 27414048. PMCID: PMC4944916.
Article
26. Menon V, Uddin LQ. 2010; Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 214:655–67. DOI: 10.1007/s00429-010-0262-0. PMID: 20512370. PMCID: PMC2899886.
Article
27. Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, et al. 2010; Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex. 20:2636–46. DOI: 10.1093/cercor/bhq011. PMID: 20154013. PMCID: PMC2951845.
Article
28. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. 2005; The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 102:9673–8. DOI: 10.1073/pnas.0504136102. PMID: 15976020. PMCID: PMC1157105.
Article
29. Tang J, Bair M, Descalzi G. 2021; Reactive astrocytes: critical players in the development of chronic pain. Front Psychiatry. 12:682056. DOI: 10.3389/fpsyt.2021.682056. PMID: 34122194. PMCID: PMC8192827.
Article
30. Liang L, Lutz BM, Bekker A, Tao YX. 2015; Epigenetic regulation of chronic pain. Epigenomics. 7:235–45. DOI: 10.2217/epi.14.75. PMID: 25942533. PMCID: PMC4422180.
Article
31. Denk F, McMahon SB, Tracey I. 2014; Pain vulnerability: a neurobiological perspective. Nat Neurosci. 17:192–200. DOI: 10.1038/nn.3628. PMID: 24473267.
Article
32. Bai G, Ren K, Dubner R. 2015; Epigenetic regulation of persistent pain. Transl Res. 165:177–99. DOI: 10.1016/j.trsl.2014.05.012. PMID: 24948399. PMCID: PMC4247805.
Article
33. Mauceri D. 2022; Role of epigenetic mechanisms in chronic pain. Cells. 11:2613. DOI: 10.3390/cells11162613. PMID: 36010687. PMCID: PMC9406853.
Article
34. Jiang W, Tan XY, Li JM, Yu P, Dong M. 2022; DNA methylation: a target in neuropathic pain. Front Med (Lausanne). 9:879902. DOI: 10.3389/fmed.2022.879902. PMID: 35872752. PMCID: PMC9301322.
Article
35. Neumann N, Domin M, Schmidt CO, Lotze M. 2023; Chronic pain is associated with less grey matter volume in the anterior cingulum, anterior and posterior insula and hippocampus across three different chronic pain conditions. Eur J Pain. 27:1239–48. DOI: 10.1002/ejp.2153. PMID: 37366271.
Article
36. Farrell SF, Campos AI, Kho PF, de Zoete RMJ, Sterling M, Rentería ME, et al. 2021; Genetic basis to structural grey matter associations with chronic pain. Brain. 144:3611–22. DOI: 10.1093/brain/awab334. PMID: 34907416.
Article
37. Smallwood RF, Laird AR, Ramage AE, Parkinson AL, Lewis J, Clauw DJ, et al. 2013; Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain. 14:663–75. DOI: 10.1016/j.jpain.2013.03.001. PMID: 23685185. PMCID: PMC4827858.
Article
38. Wang Y, Hardy SJ, Ichesco E, Zhang P, Harris RE, Darbari DS. 2022; Alteration of grey matter volume is associated with pain and quality of life in children with sickle cell disease. Transl Res. 240:17–25. DOI: 10.1016/j.trsl.2021.08.004. PMID: 34418575.
Article
39. Li T, Li J, Zhao R, Zhou J, Chu X. 2023; Deficits in the thalamocortical pathway associated with hypersensitivity to pain in patients with frozen shoulder. Front Neurol. 14:1180873. DOI: 10.3389/fneur.2023.1180873. PMID: 37265462. PMCID: PMC10229835.
Article
40. Wang X, Luo Q, Tian F, Cheng B, Qiu L, Wang S, et al. 2019; Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J Psychiatry Neurosci. 44:89–101. DOI: 10.1503/jpn.180002. PMID: 30354038. PMCID: PMC6397036.
Article
41. Kummer KK, Mitrić M, Kalpachidou T, Kress M. 2020; The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. Int J Mol Sci. 21:3440. DOI: 10.3390/ijms21103440. PMID: 32414089. PMCID: PMC7279227.
Article
42. Domin M, Strauss S, McAuley JH, Lotze M. 2021; Complex regional pain syndrome: thalamic GMV atrophy and associations of lower GMV with clinical and sensorimotor performance data. Front Neurol. 12:722334. DOI: 10.3389/fneur.2021.722334. PMID: 34630295. PMCID: PMC8492934.
Article
43. Martucci KT, Ng P, Mackey S. 2014; Neuroimaging chronic pain: what have we learned and where are we going? Future Neurol. 9:615–26. DOI: 10.2217/fnl.14.57. PMID: 28163658. PMCID: PMC5289824.
Article
44. Seminowicz DA, Davis KD. 2006; Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain. 120:297–306. DOI: 10.1016/j.pain.2005.11.008. PMID: 16427738.
Article
45. Seminowicz DA, Moayedi M. 2017; The dorsolateral prefrontal cortex in acute and chronic pain. J Pain. 18:1027–35. DOI: 10.1016/j.jpain.2017.03.008. PMID: 28400293. PMCID: PMC5581265.
Article
46. Yu Y, Zhao H, Dai L, Su Y, Wang X, Chen C, et al. 2021; Headache frequency associates with brain microstructure changes in patients with migraine without aura. Brain Imaging Behav. 15:60–7. DOI: 10.1007/s11682-019-00232-2. PMID: 31898090.
Article
47. Mahmut AN, Gizem G, Nevin P. 2023; Changes in the hippocampal volume in chronic migraine, episodic migraine, and medication overuse headache patients. Ideggyogy Sz. 76:373–8. DOI: 10.18071/isz.76.0373. PMID: 38051692.
Article
48. Cheng Z, Nie W, Leng J, Yang L, Wang Y, Li X, et al. 2024; Amygdala and cognitive impairment in cerebral small vessel disease: structural, functional, and metabolic changes. Front Neurol. 15:1398009. DOI: 10.3389/fneur.2024.1398009. PMID: 39070051. PMCID: PMC11275956.
Article
49. McBenedict B, Petrus D, Pires MP, Pogodina A, Arrey Agbor DB, Ahmed YA, et al. 2024; The role of the insula in chronic pain and associated structural changes: an integrative review. Cureus. 16:e58511. DOI: 10.7759/cureus.58511.
Article
50. Tracey I. 2007; Neuroimaging of pain mechanisms. Curr Opin Support Palliat Care. 1:109–16. DOI: 10.1097/SPC.0b013e3282efc58b. PMID: 18685351.
Article
51. Zhu Y, Dai L, Zhao H, Ji B, Yu Y, Dai H, et al. 2021; Alterations in effective connectivity of the hippocampus in migraine without aura. J Pain Res. 14:3333–43. DOI: 10.2147/JPR.S327945. PMID: 34707401. PMCID: PMC8544273.
Article
52. van der Miesen MM, Lindquist MA, Wager TD. 2019; Neuroimaging-based biomarkers for pain: state of the field and current directions. Pain Rep. 4:e751. DOI: 10.1097/PR9.0000000000000751. PMID: 31579847. PMCID: PMC6727991.
Article
53. Al Qawasmeh M, Ahmed YB, Al-Bzour AN, Al-Majali GN, Alzghoul SM, Al-Khalili AA, et al. 2022; Meta-analytical evidence of functional and structural abnormalities associated with pain processing in migraine patients: an activation likelihood estimation. Medicine (Baltimore). 101:e31206. DOI: 10.1097/MD.0000000000031206. PMID: 36316871. PMCID: PMC9622585.
Article
54. Baliki MN, Geha PY, Apkarian AV, Chialvo DR. 2008; Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci. 28:1398–403. DOI: 10.1523/JNEUROSCI.4123-07.2008. PMID: 18256259. PMCID: PMC6671589.
Article
55. Johansson E, Coppieters I, Nijs J. 2023; The default mode of chronic pain: what does it mean and how should we frame it to our patients? JSP. 2:32–42. DOI: 10.18502/jsp.v2i2.12678.
Article
56. van Ettinger-Veenstra H, Lundberg P, Alföldi P, Södermark M, Graven-Nielsen T, Sjörs A, et al. 2019; Chronic widespread pain patients show disrupted cortical connectivity in default mode and salience networks, modulated by pain sensitivity. J Pain Res. 12:1743–55. DOI: 10.2147/JPR.S189443. PMID: 31213886. PMCID: PMC6549756.
57. Meier SK, Ray KL, Waller NC, Gendron BC, Aytur SA, Robin DA. 2020; Network analysis of induced neural plasticity post-acceptance and commitment therapy for chronic pain. Brain Sci. 11:10. DOI: 10.3390/brainsci11010010. PMID: 33374858. PMCID: PMC7823706.
Article
58. Gandhi W, Rosenek NR, Harrison R, Salomons TV. 2020; Functional connectivity of the amygdala is linked to individual differences in emotional pain facilitation. Pain. 161:300–7. DOI: 10.1097/j.pain.0000000000001714. PMID: 31613866.
Article
59. Guo X, Zhang Q, Singh A, Wang J, Chen ZS. 2020; Granger causality analysis of rat cortical functional connectivity in pain. J Neural Eng. 17:016050. DOI: 10.1088/1741-2552/ab6cba. PMID: 31945754. PMCID: PMC8011935.
Article
60. Benarroch E. Benarroch E, editor. 2021. Central processing and modulation of pain. In: Neuroscience for clinicians: basic processes, circuits, disease mechanisms, and therapeutic implications. Oxford Academic;p. 674–89. DOI: 10.1093/med/9780190948894.003.0036.
61. Teh K, Wilkinson ID, Heiberg-Gibbons F, Awadh M, Kelsall A, Pallai S, et al. 2021; Somatosensory network functional connectivity differentiates clinical pain phenotypes in diabetic neuropathy. Diabetologia. 64:1412–21. DOI: 10.1007/s00125-021-05416-4. PMID: 33768284. PMCID: PMC8099810.
Article
62. Zheng W, Woo CW, Yao Z, Goldstein P, Atlas LY, Roy M, et al. 2020; Pain-evoked reorganization in functional brain networks. Cereb Cortex. 30:2804–22. DOI: 10.1093/cercor/bhz276. PMID: 31813959. PMCID: PMC7197093.
Article
63. Zheng W, Woo CW, Yao Z, Goldstein P, Atlas LY, Roy M, et al. 2020; Pain-evoked reorganization in functional brain networks. Cereb Cortex. 30:2804–22. DOI: 10.1093/cercor/bhz276. PMID: 31813959. PMCID: PMC7197093.
Article
64. De Ridder D, Vanneste S, Smith M, Adhia D. 2022; Pain and the triple network model. Front Neurol. 13:757241. DOI: 10.3389/fneur.2022.757241. PMID: 35321511. PMCID: PMC8934778.
Article
65. Yang S, Chang MC. 2019; Chronic pain: structural and functional changes in brain structures and associated negative affective states. Int J Mol Sci. 20:3130. DOI: 10.3390/ijms20133130. PMID: 31248061. PMCID: PMC6650904.
Article
66. Ru Q, Lu Y, Saifullah AB, Blanco FA, Yao C, Cata JP, et al. 2022; TIAM1-mediated synaptic plasticity underlies comorbid depression-like and ketamine antidepressant-like actions in chronic pain. J Clin Invest. 132:e158545. DOI: 10.1172/JCI158545. PMID: 36519542. PMCID: PMC9753999.
Article
67. Noorani A, Hung PS, Zhang JY, Sohng K, Laperriere N, Moayedi M, et al. 2022; Pain relief reverses hippocampal abnormalities in trigeminal neuralgia. J Pain. 23:141–55. DOI: 10.1016/j.jpain.2021.07.004. PMID: 34380093.
Article
68. Kong J, Jensen K, Loiotile R, Cheetham A, Wey HY, Tan Y, et al. 2013; Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain. 154:459–67. DOI: 10.1016/j.pain.2012.12.004. PMID: 23352757. PMCID: PMC3725961.
Article
69. Apkarian AV, Baliki MN, Geha PY. 2009; Towards a theory of chronic pain. Prog Neurobiol. 87:81–97. DOI: 10.1016/j.pneurobio.2008.09.018. PMID: 18952143. PMCID: PMC2650821.
Article
70. Ni X, Zhang J, Sun M, Wang L, Xu T, Zeng Q, et al. 2022; Abnormal dynamics of functional connectivity density associated with chronic neck pain. Front Mol Neurosci. 15:880228. DOI: 10.3389/fnmol.2022.880228. PMID: 35845606. PMCID: PMC9277509.
Article
71. Ta Dinh S, Nickel MM, Tiemann L, May ES, Heitmann H, Hohn VD, et al. 2019; Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain. 160:2751–65. Erratum in: Pain 2020; 161: 1684. DOI: 10.1097/j.pain.0000000000001666. PMID: 31356455. PMCID: PMC7195856.
Article
72. Zeng X, Tang W, Yang J, Lin X, Du M, Chen X, et al. 2023; Diagnosis of chronic musculoskeletal pain by using functional near-infrared spectroscopy and machine learning. Bioengineering (Basel). 10:669. DOI: 10.3390/bioengineering10060669. PMID: 37370599. PMCID: PMC10294811.
Article
73. Drabek M, Hodkinson D, Horvath S, Millar B, Pszczolkowski Parraguez S, Tench CR, et al. 2023; Brain connectivity-guided, Optimised theta burst transcranial magnetic stimulation to improve Central Pain Modulation in knee Osteoarthritis Pain (BoostCPM): protocol of a pilot randomised clinical trial in a secondary care setting in the UK. BMJ Open. 13:e073378. DOI: 10.1136/bmjopen-2023-073378. PMID: 37844981. PMCID: PMC10582853.
74. Neeb L, Bayer A, Bayer KE, Farmer A, Fiebach JB, Siegmund B, et al. 2019; Transcranial direct current stimulation in inflammatory bowel disease patients modifies resting-state functional connectivity: a RCT. Brain Stimul. 12:978–80. DOI: 10.1016/j.brs.2019.03.001. PMID: 30905546.
Article
75. Kaplan CM, Harris RE, Lee U, DaSilva AF, Mashour GA, Harte SE. 2020; Targeting network hubs with noninvasive brain stimulation in patients with fibromyalgia. Pain. 161:43–46. DOI: 10.1097/j.pain.0000000000001696. PMID: 31490327. PMCID: PMC9878573.
Article
76. Albrecht DS, Kim M, Akeju O, Torrado-Carvajal A, Edwards RR, Zhang Y, et al. 2021; The neuroinflammatory component of negative affect in patients with chronic pain. Mol Psychiatry. 26:864–74. DOI: 10.1038/s41380-019-0433-1. PMID: 31138890. PMCID: PMC7001732.
Article
77. Upadhyay J, Maleki N, Potter J, Elman I, Rudrauf D, Knudsen J, et al. 2010; Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain. 133:2098–114. DOI: 10.1093/brain/awq138. PMID: 20558415. PMCID: PMC2912691.
Article
78. Dawson N, McDonald M, Higham DJ, Morris BJ, Pratt JA. 2014; Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks. Neuropsychopharmacology. 39:1786–98. DOI: 10.1038/npp.2014.26. PMID: 24492765. PMCID: PMC4023152.
Article
79. De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. 2013; Burst spinal cord stimulation for limb and back pain. World Neurosurg. 80:642–9.e1. DOI: 10.1016/j.wneu.2013.01.040. PMID: 23321375.
Article
80. Bushnell MC, Ceko M, Low LA. 2013; Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 14:502–11. DOI: 10.1038/nrn3516. PMID: 23719569. PMCID: PMC4465351.
Article
81. Seminowicz DA, Shpaner M, Keaser ML, Krauthamer GM, Mantegna J, Dumas JA, et al. 2013; Cognitive-behavioral therapy increases prefrontal cortex gray matter in patients with chronic pain. J Pain. 14:1573–84. DOI: 10.1016/j.jpain.2013.07.020. PMID: 24135432. PMCID: PMC3874446.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr