1. McCarberg B, Peppin J. 2019; Pain pathways and nervous system plasticity: learning and memory in pain. Pain Med. 20:2421–37. DOI:
10.1093/pm/pnz017. PMID:
30865778.
Article
5. Kourosh-Arami M, Komaki A. 2023; Reciprocal interaction of pain and brain: plasticity-induced pain, pain-induced plasticity, and therapeutic targets. CNS Neurol Disord Drug Targets. 22:1484–92. DOI:
10.2174/1871527322666221102141002. PMID:
36330624.
7. Ploner M, Schmitz F, Freund HJ, Schnitzler A. 1999; Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol. 81:3100–4. DOI:
10.1152/jn.1999.81.6.3100. PMID:
10368426.
Article
8. Worthen SF, Hobson AR, Hall SD, Aziz Q, Furlong PL. 2011; Primary and secondary somatosensory cortex responses to anticipation and pain: a magnetoencephalography study. Eur J Neurosci. 33:946–59. DOI:
10.1111/j.1460-9568.2010.07575.x. PMID:
21323764.
Article
9. Zhu X, Huang JY, Dong WY, Tang HD, Xu S, Wu Q, et al. 2024; Somatosensory cortex and central amygdala regulate neuropathic pain-mediated peripheral immune response via vagal projections to the spleen. Nat Neurosci. 27:471–83. DOI:
10.1038/s41593-023-01561-8. PMID:
38291284.
Article
10. Xiong W, Ping X, Ripsch MS, Chavez GSC, Hannon HE, Jiang K, et al. 2017; Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Sci Rep. 7:12743. DOI:
10.1038/s41598-017-12972-6. PMID:
28986567. PMCID:
PMC5630599.
Article
14. Budai D, Harasawa I, Fields HL. 1998; Midbrain periaqueductal gray (PAG) inhibits nociceptive inputs to sacral dorsal horn nociceptive neurons through alpha2-adrenergic receptors. J Neurophysiol. 80:2244–54. DOI:
10.1152/jn.1998.80.5.2244. PMID:
9819240.
15. Fields HL, Basbaum AI, Heinricher MM. McMahon SB, Koltzenburg M, editors. 2005. Central nervous system mechanisms of pain modulation. In: Wall and Melzack's textbook of pain. 5th ed. Churchill Livingstone;p. 125–42. DOI:
10.1016/B0-443-07287-6/50012-6. PMID:
16683205.
17. López-Solà M, Pujol J, Monfort J, Deus J, Blanco-Hinojo L, Harrison BJ, et al. 2022; The neurologic pain signature responds to nonsteroidal anti-inflammatory treatment vs placebo in knee osteoarthritis. Pain Rep. 7:e986. DOI:
10.1097/PR9.0000000000000986. PMID:
35187380. PMCID:
PMC8853614.
Article
19. Zhang Z, Ding X, Zhou Z, Qiu Z, Shi N, Zhou S, et al. 2019; Sirtuin 1 alleviates diabetic neuropathic pain by regulating synaptic plasticity of spinal dorsal horn neurons. Pain. 160:1082–92. DOI:
10.1097/j.pain.0000000000001489. PMID:
30649099.
Article
20. Mascio G, Notartomaso S, Martinello K, Liberatore F, Bucci D, Imbriglio T, et al. 2022; A progressive build-up of perineuronal nets in the somatosensory cortex is associated with the development of chronic pain in mice. J Neurosci. 42:3037–48. DOI:
10.1523/JNEUROSCI.1714-21.2022. PMID:
35193928. PMCID:
PMC8985861.
Article
21. Li C, Lei Y, Tian Y, Xu S, Shen X, Wu H, et al. 2019; The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol Pain. 15:1744806919847366. DOI:
10.1177/1744806919847366. PMID:
30977423. PMCID:
PMC6509976.
Article
22. Mills EP, Keay KA, Henderson LA. 2021; Brainstem pain-modulation circuitry and its plasticity in neuropathic pain: insights from human brain imaging investigations. Front Pain Res (Lausanne). 2:705345. Erratum in: Front Pain Res (Lausanne) 2021; 2: 812209. DOI:
10.3389/fpain.2021.705345. PMID:
35295481. PMCID:
PMC8915745.
Article
23. Ng SK, Urquhart DM, Fitzgerald PB, Cicuttini FM, Kirkovski M, Maller JJ, et al. 2021; Examining resting-state functional connectivity in key hubs of the default mode network in chronic low back pain. Scand J Pain. 21:839–46. DOI:
10.1515/sjpain-2020-0184. PMID:
34378878.
Article
24. Coppola G, Di Renzo A, Petolicchio B, Tinelli E, Di Lorenzo C, Serrao M, et al. 2020; Increased neural connectivity between the hypothalamus and cortical resting-state functional networks in chronic migraine. J Neurol. 267:185–91. DOI:
10.1007/s00415-019-09571-y. PMID:
31606759.
Article
25. Wortinger LA, Endestad T, Melinder AM, Øie MG, Sevenius A, Bruun Wyller V. 2016; Aberrant resting-state functional connectivity in the salience network of adolescent chronic fatigue syndrome. PLoS One. 11:e0159351. DOI:
10.1371/journal.pone.0159351. PMID:
27414048. PMCID:
PMC4944916.
Article
27. Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, et al. 2010; Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex. 20:2636–46. DOI:
10.1093/cercor/bhq011. PMID:
20154013. PMCID:
PMC2951845.
Article
28. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. 2005; The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 102:9673–8. DOI:
10.1073/pnas.0504136102. PMID:
15976020. PMCID:
PMC1157105.
Article
31. Denk F, McMahon SB, Tracey I. 2014; Pain vulnerability: a neurobiological perspective. Nat Neurosci. 17:192–200. DOI:
10.1038/nn.3628. PMID:
24473267.
Article
35. Neumann N, Domin M, Schmidt CO, Lotze M. 2023; Chronic pain is associated with less grey matter volume in the anterior cingulum, anterior and posterior insula and hippocampus across three different chronic pain conditions. Eur J Pain. 27:1239–48. DOI:
10.1002/ejp.2153. PMID:
37366271.
Article
36. Farrell SF, Campos AI, Kho PF, de Zoete RMJ, Sterling M, Rentería ME, et al. 2021; Genetic basis to structural grey matter associations with chronic pain. Brain. 144:3611–22. DOI:
10.1093/brain/awab334. PMID:
34907416.
Article
37. Smallwood RF, Laird AR, Ramage AE, Parkinson AL, Lewis J, Clauw DJ, et al. 2013; Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain. 14:663–75. DOI:
10.1016/j.jpain.2013.03.001. PMID:
23685185. PMCID:
PMC4827858.
Article
38. Wang Y, Hardy SJ, Ichesco E, Zhang P, Harris RE, Darbari DS. 2022; Alteration of grey matter volume is associated with pain and quality of life in children with sickle cell disease. Transl Res. 240:17–25. DOI:
10.1016/j.trsl.2021.08.004. PMID:
34418575.
Article
39. Li T, Li J, Zhao R, Zhou J, Chu X. 2023; Deficits in the thalamocortical pathway associated with hypersensitivity to pain in patients with frozen shoulder. Front Neurol. 14:1180873. DOI:
10.3389/fneur.2023.1180873. PMID:
37265462. PMCID:
PMC10229835.
Article
40. Wang X, Luo Q, Tian F, Cheng B, Qiu L, Wang S, et al. 2019; Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J Psychiatry Neurosci. 44:89–101. DOI:
10.1503/jpn.180002. PMID:
30354038. PMCID:
PMC6397036.
Article
41. Kummer KK, Mitrić M, Kalpachidou T, Kress M. 2020; The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. Int J Mol Sci. 21:3440. DOI:
10.3390/ijms21103440. PMID:
32414089. PMCID:
PMC7279227.
Article
42. Domin M, Strauss S, McAuley JH, Lotze M. 2021; Complex regional pain syndrome: thalamic GMV atrophy and associations of lower GMV with clinical and sensorimotor performance data. Front Neurol. 12:722334. DOI:
10.3389/fneur.2021.722334. PMID:
34630295. PMCID:
PMC8492934.
Article
46. Yu Y, Zhao H, Dai L, Su Y, Wang X, Chen C, et al. 2021; Headache frequency associates with brain microstructure changes in patients with migraine without aura. Brain Imaging Behav. 15:60–7. DOI:
10.1007/s11682-019-00232-2. PMID:
31898090.
Article
47. Mahmut AN, Gizem G, Nevin P. 2023; Changes in the hippocampal volume in chronic migraine, episodic migraine, and medication overuse headache patients. Ideggyogy Sz. 76:373–8. DOI:
10.18071/isz.76.0373. PMID:
38051692.
Article
48. Cheng Z, Nie W, Leng J, Yang L, Wang Y, Li X, et al. 2024; Amygdala and cognitive impairment in cerebral small vessel disease: structural, functional, and metabolic changes. Front Neurol. 15:1398009. DOI:
10.3389/fneur.2024.1398009. PMID:
39070051. PMCID:
PMC11275956.
Article
49. McBenedict B, Petrus D, Pires MP, Pogodina A, Arrey Agbor DB, Ahmed YA, et al. 2024; The role of the insula in chronic pain and associated structural changes: an integrative review. Cureus. 16:e58511. DOI:
10.7759/cureus.58511.
Article
51. Zhu Y, Dai L, Zhao H, Ji B, Yu Y, Dai H, et al. 2021; Alterations in effective connectivity of the hippocampus in migraine without aura. J Pain Res. 14:3333–43. DOI:
10.2147/JPR.S327945. PMID:
34707401. PMCID:
PMC8544273.
Article
53. Al Qawasmeh M, Ahmed YB, Al-Bzour AN, Al-Majali GN, Alzghoul SM, Al-Khalili AA, et al. 2022; Meta-analytical evidence of functional and structural abnormalities associated with pain processing in migraine patients: an activation likelihood estimation. Medicine (Baltimore). 101:e31206. DOI:
10.1097/MD.0000000000031206. PMID:
36316871. PMCID:
PMC9622585.
Article
55. Johansson E, Coppieters I, Nijs J. 2023; The default mode of chronic pain: what does it mean and how should we frame it to our patients? JSP. 2:32–42. DOI:
10.18502/jsp.v2i2.12678.
Article
56. van Ettinger-Veenstra H, Lundberg P, Alföldi P, Södermark M, Graven-Nielsen T, Sjörs A, et al. 2019; Chronic widespread pain patients show disrupted cortical connectivity in default mode and salience networks, modulated by pain sensitivity. J Pain Res. 12:1743–55. DOI:
10.2147/JPR.S189443. PMID:
31213886. PMCID:
PMC6549756.
57. Meier SK, Ray KL, Waller NC, Gendron BC, Aytur SA, Robin DA. 2020; Network analysis of induced neural plasticity post-acceptance and commitment therapy for chronic pain. Brain Sci. 11:10. DOI:
10.3390/brainsci11010010. PMID:
33374858. PMCID:
PMC7823706.
Article
58. Gandhi W, Rosenek NR, Harrison R, Salomons TV. 2020; Functional connectivity of the amygdala is linked to individual differences in emotional pain facilitation. Pain. 161:300–7. DOI:
10.1097/j.pain.0000000000001714. PMID:
31613866.
Article
60. Benarroch E. Benarroch E, editor. 2021. Central processing and modulation of pain. In: Neuroscience for clinicians: basic processes, circuits, disease mechanisms, and therapeutic implications. Oxford Academic;p. 674–89. DOI:
10.1093/med/9780190948894.003.0036.
61. Teh K, Wilkinson ID, Heiberg-Gibbons F, Awadh M, Kelsall A, Pallai S, et al. 2021; Somatosensory network functional connectivity differentiates clinical pain phenotypes in diabetic neuropathy. Diabetologia. 64:1412–21. DOI:
10.1007/s00125-021-05416-4. PMID:
33768284. PMCID:
PMC8099810.
Article
65. Yang S, Chang MC. 2019; Chronic pain: structural and functional changes in brain structures and associated negative affective states. Int J Mol Sci. 20:3130. DOI:
10.3390/ijms20133130. PMID:
31248061. PMCID:
PMC6650904.
Article
66. Ru Q, Lu Y, Saifullah AB, Blanco FA, Yao C, Cata JP, et al. 2022; TIAM1-mediated synaptic plasticity underlies comorbid depression-like and ketamine antidepressant-like actions in chronic pain. J Clin Invest. 132:e158545. DOI:
10.1172/JCI158545. PMID:
36519542. PMCID:
PMC9753999.
Article
67. Noorani A, Hung PS, Zhang JY, Sohng K, Laperriere N, Moayedi M, et al. 2022; Pain relief reverses hippocampal abnormalities in trigeminal neuralgia. J Pain. 23:141–55. DOI:
10.1016/j.jpain.2021.07.004. PMID:
34380093.
Article
68. Kong J, Jensen K, Loiotile R, Cheetham A, Wey HY, Tan Y, et al. 2013; Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain. 154:459–67. DOI:
10.1016/j.pain.2012.12.004. PMID:
23352757. PMCID:
PMC3725961.
Article
70. Ni X, Zhang J, Sun M, Wang L, Xu T, Zeng Q, et al. 2022; Abnormal dynamics of functional connectivity density associated with chronic neck pain. Front Mol Neurosci. 15:880228. DOI:
10.3389/fnmol.2022.880228. PMID:
35845606. PMCID:
PMC9277509.
Article
71. Ta Dinh S, Nickel MM, Tiemann L, May ES, Heitmann H, Hohn VD, et al. 2019; Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain. 160:2751–65. Erratum in: Pain 2020; 161: 1684. DOI:
10.1097/j.pain.0000000000001666. PMID:
31356455. PMCID:
PMC7195856.
Article
72. Zeng X, Tang W, Yang J, Lin X, Du M, Chen X, et al. 2023; Diagnosis of chronic musculoskeletal pain by using functional near-infrared spectroscopy and machine learning. Bioengineering (Basel). 10:669. DOI:
10.3390/bioengineering10060669. PMID:
37370599. PMCID:
PMC10294811.
Article
73. Drabek M, Hodkinson D, Horvath S, Millar B, Pszczolkowski Parraguez S, Tench CR, et al. 2023; Brain connectivity-guided, Optimised theta burst transcranial magnetic stimulation to improve Central Pain Modulation in knee Osteoarthritis Pain (BoostCPM): protocol of a pilot randomised clinical trial in a secondary care setting in the UK. BMJ Open. 13:e073378. DOI:
10.1136/bmjopen-2023-073378. PMID:
37844981. PMCID:
PMC10582853.
74. Neeb L, Bayer A, Bayer KE, Farmer A, Fiebach JB, Siegmund B, et al. 2019; Transcranial direct current stimulation in inflammatory bowel disease patients modifies resting-state functional connectivity: a RCT. Brain Stimul. 12:978–80. DOI:
10.1016/j.brs.2019.03.001. PMID:
30905546.
Article
76. Albrecht DS, Kim M, Akeju O, Torrado-Carvajal A, Edwards RR, Zhang Y, et al. 2021; The neuroinflammatory component of negative affect in patients with chronic pain. Mol Psychiatry. 26:864–74. DOI:
10.1038/s41380-019-0433-1. PMID:
31138890. PMCID:
PMC7001732.
Article
77. Upadhyay J, Maleki N, Potter J, Elman I, Rudrauf D, Knudsen J, et al. 2010; Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain. 133:2098–114. DOI:
10.1093/brain/awq138. PMID:
20558415. PMCID:
PMC2912691.
Article
78. Dawson N, McDonald M, Higham DJ, Morris BJ, Pratt JA. 2014; Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks. Neuropsychopharmacology. 39:1786–98. DOI:
10.1038/npp.2014.26. PMID:
24492765. PMCID:
PMC4023152.
Article
79. De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. 2013; Burst spinal cord stimulation for limb and back pain. World Neurosurg. 80:642–9.e1. DOI:
10.1016/j.wneu.2013.01.040. PMID:
23321375.
Article
80. Bushnell MC, Ceko M, Low LA. 2013; Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 14:502–11. DOI:
10.1038/nrn3516. PMID:
23719569. PMCID:
PMC4465351.
Article
81. Seminowicz DA, Shpaner M, Keaser ML, Krauthamer GM, Mantegna J, Dumas JA, et al. 2013; Cognitive-behavioral therapy increases prefrontal cortex gray matter in patients with chronic pain. J Pain. 14:1573–84. DOI:
10.1016/j.jpain.2013.07.020. PMID:
24135432. PMCID:
PMC3874446.
Article