Anat Cell Biol.  2025 Mar;58(1):8-13. 10.5115/acb.24.125.

Cost-effectiveness and other considerations for different research techniques applied in ancient DNA analysis

Affiliations
  • 1Institute of Korean Archaeology and Ancient History, Kyung Hee University, Seoul, Korea
  • 2Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Ishikawa, Japan
  • 3Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
  • 4Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea

Abstract

Ancient DNA (aDNA) analysis has developed rapidly since it first emerged in the 1980s, becoming an almost indispensable tool in anthropological and archaeological sciences. Earlier aDNA study was based on the polymerase chain reaction (PCR) technique, with which, unfortunately, modern DNA contamination and other authenticity issues were often incurred. These technical hurdles were soon overcome by application of advancements in the forms of the next generation sequencing (NGS) technique and others. However, since NGS requires money, time, and, in the case of large projects, manpower as well, genetic analysis of some ancient samples considered to be insignificant is commonly delayed or, in the worst cases, neglected entirely. We acknowledge that as a diagnostic tool in aDNA analysis, PCR is less accurate than NGS and more easily affected by modern DNA contamination; but it also has advantages, such as simplicity, time-saving, and greater ease of interpretation, among others. The role of PCR in aDNA analysis, then, should be reconsidered.

Keyword

DNA; ancient; Commerce; Efficiency; Polymerase chain reaction; High-throughput nucleotide sequencing

Figure

  • Fig. 1 A brief timetable of aDNA analysis. aDNA, ancient DNA; PCR, polymerase chain reaction; NGS, next-generation sequencing [7-12].

  • Fig. 2 Excavation of ancient bones at archaeological site.

  • Fig. 3 Disposable suits and gloves have to be worn at the archaeological sites for the retrieval of ancient samples (courtesy of Dr. Vasant Shinde).

  • Fig. 4 Our suggestion of aDNA research workflow. When ancient samples are discovered, and NGS analysis would be declined or delayed for the cases, PCR can be used as a test before the complete report of NGS. aDNA, ancient DNA; PCR, polymerase chain reaction; NGS, next-generation sequencing.


Reference

References

1. Kahila Bar-Gal G, Kim MJ, Klein A, Shin DH, Oh CS, Kim JW, Kim TH, Kim SB, Grant PR, Pappo O, Spigelman M, Shouval D. 2012; Tracing hepatitis B virus to the 16th century in a Korean mummy. Hepatology. 56:1671–80. DOI: 10.1002/hep.25852. PMID: 22610996.
Article
2. Pääbo S. 1985; Molecular cloning of ancient Egyptian mummy DNA. Nature. 314:644–5. DOI: 10.1038/314644a0. PMID: 3990798.
Article
3. Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR, Hallows JL, Kusebauch U, Vigl EE, Malfertheiner P, Megraud F, O'Sullivan N, Cipollini G, Coia V, Samadelli M, Engstrand L, Linz B, Moritz RL, Grimm R, Krause J, Nebel A, Moodley Y, Rattei T, Zink A. 2016; The 5300-year-old Helicobacter pylori genome of the Iceman. Science. 351:162–5. DOI: 10.1126/science.aad2545. PMID: 26744403. PMCID: PMC4775254.
Article
4. Hong JH, Oh CS, Kim S, Kang IU, Shin DH. 2022; Genetic analysis of mitochondrial DNA from ancient Equus caballus bones found at archaeological site of Joseon dynasty period capital area. Anim Biosci. 35:1141–50. DOI: 10.5713/ab.21.0500. PMID: 35240033. PMCID: PMC9262724.
Article
5. Hong JH, Oh CS, Shin DH. Shin DH, Bianucci R, editors. History of ancient DNA analysis in mummy research. The handbook of mummy studies: new frontiers in scientific and cultural perspectives. Springer;2021. p. 271–84. DOI: 10.1007/978-981-15-3354-9_56.
6. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. 1984; DNA sequences from the quagga, an extinct member of the horse family. Nature. 312:282–4. DOI: 10.1038/312282a0. PMID: 6504142.
Article
7. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S. 2001; Ancient DNA. Nat Rev Genet. 2:353–9. DOI: 10.1038/35072071. PMID: 11331901.
Article
8. McHugo GP, Dover MJ, MacHugh DE. 2019; Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol. 17:98. DOI: 10.1186/s12915-019-0724-7. PMID: 31791340. PMCID: PMC6889691.
Article
9. Ning C, Li T, Wang K, Zhang F, Li T, Wu X, Gao S, Zhang Q, Zhang H, Hudson MJ, Dong G, Wu S, Fang Y, Liu C, Feng C, Li W, Han T, Li R, Wei J, Zhu Y, Zhou Y, Wang CC, Fan S, Xiong Z, Sun Z, Ye M, Sun L, Wu X, Liang F, Cao Y, Wei X, Zhu H, Zhou H, Krause J, Robbeets M, Jeong C, Cui Y. 2020; Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat Commun. 11:2700. DOI: 10.1038/s41467-020-16557-2. PMID: 32483115. PMCID: PMC7264253.
Article
10. Fridovich-Keil JL. 2024. Sep. 24. Human genome project [Internet]. Available from: https://www.britannica.com/event/Human-Genome-Project. Encyclopædia Britannica;cited 2024 Apr 26.
11. Orlando L, Allaby R, Skoglund P, der Sarkissian C, Stockhammer PW, Ávila-Arcos MC, Fu Q, Krause J, Willerslev E, Stone AC, Warinner C. 2021; Ancient DNA analysis. Nat Rev Methods Primers. 1:14. DOI: 10.1038/s43586-020-00011-0.
Article
12. Press release. NobelPrize.org. 2022. Oct. 3. Nobel prize outreach AB 2024 [Internet]. Available from: https://www.nobelprize.org/prizes/medicine/2022/press-release/. The Nobel Prize;cited 2024 Apr 26.
13. Carpenter ML, Buenrostro JD, Valdiosera C, Schroeder H, Allentoft ME, Sikora M, Rasmussen M, Gravel S, Guillén S, Nekhrizov G, Leshtakov K, Dimitrova D, Theodossiev N, Pettener D, Luiselli D, Sandoval K, Moreno-Estrada A, Li Y, Wang J, Gilbert MT, Willerslev E, Greenleaf WJ, Bustamante CD. 2013; Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am J Hum Genet. 93:852–64. DOI: 10.1016/j.ajhg.2013.10.002. PMID: 24568772. PMCID: PMC3824117.
Article
14. Roberts C, Ingham S. 2008; Using ancient DNA analysis in palaeopathology: a critical analysis of published papers, with recommendations for future work. Int J Osteoarchaeol. 18:600–13. DOI: 10.1002/oa.966.
Article
15. Willerslev E, Cooper A. 2005; Ancient DNA. Proc Biol Sci. 272:3–16. DOI: 10.1098/rspb.2004.2813. PMID: 15875564. PMCID: PMC1634942.
16. Khairat R, Ball M, Chang CC, Bianucci R, Nerlich AG, Trautmann M, Ismail S, Shanab GM, Karim AM, Gad YZ, Pusch CM. 2013; First insights into the metagenome of Egyptian mummies using next-generation sequencing. J Appl Genet. 54:309–25. DOI: 10.1007/s13353-013-0145-1. PMID: 23553074.
Article
17. Knapp M, Hofreiter M. 2010; Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes (Basel). 1:227–43. DOI: 10.3390/genes1020227. PMID: 24710043. PMCID: PMC3954087.
Article
18. Frantz LAF, Bradley DG, Larson G, Orlando L. 2020; Animal domestication in the era of ancient genomics. Nat Rev Genet. 21:449–60. DOI: 10.1038/s41576-020-0225-0. PMID: 32265525.
Article
19. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, Underhill PA, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O'Connor BD, Carlson MR, Meder B, Blin N, Meese E, Pusch CM, Zink A. 2012; New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing. Nat Commun. 3:698. DOI: 10.1038/ncomms1701. PMID: 22426219.
Article
20. Loreille O, Ratnayake S, Bazinet AL, Stockwell TB, Sommer DD, Rohland N, Mallick S, Johnson PLF, Skoglund P, Onorato AJ, Bergman NH, Reich D, Irwin JA. 2018; Biological sexing of a 4000-year-old Egyptian mummy head to assess the potential of nuclear DNA recovery from the most damaged and limited forensic specimens. Genes (Basel). 9:135. DOI: 10.3390/genes9030135. PMID: 29494531. PMCID: PMC5867856.
Article
21. Maixner F, Thomma A, Cipollini G, Widder S, Rattei T, Zink A. 2014; Metagenomic analysis reveals presence of Treponema denticola in a tissue biopsy of the Iceman. PLoS One. 9:e99994. DOI: 10.1371/journal.pone.0099994. PMID: 24941044. PMCID: PMC4062476.
Article
22. Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ. 2015; Gut microbiome of an 11th century A.D. pre-Columbian Andean mummy. PLoS One. 10:e0138135. DOI: 10.1371/journal.pone.0138135. PMID: 26422376. PMCID: PMC4589460.
Article
23. Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ. 2016; Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies. FEMS Microbiol Ecol. 92:fiw182. DOI: 10.1093/femsec/fiw182. PMID: 27559027.
Article
24. Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ. 2016; Natural mummification of the human gut preserves bacteriophage DNA. FEMS Microbiol Lett. 363:fnv219. DOI: 10.1093/femsle/fnv219. PMID: 26564967. PMCID: PMC5812488.
Article
25. Santiago-Rodriguez TM, Fornaciari G, Luciani S, Toranzos GA, Marota I, Giuffra V, Cano RJ. 2017; Gut microbiome and putative resistome of Inca and Italian nobility mummies. Genes (Basel). 8:310. DOI: 10.3390/genes8110310. PMID: 29112136. PMCID: PMC5704223.
Article
26. Daly KG, Maisano Delser P, Mullin VE, Scheu A, Mattiangeli V, Teasdale MD, Hare AJ, Burger J, Verdugo MP, Collins MJ, Kehati R, Erek CM, Bar-Oz G, Pompanon F, Cumer T, Çakırlar C, Mohaseb AF, Decruyenaere D, Davoudi H, Çevik Ö, Rollefson G, Vigne JD, Khazaeli R, Fathi H, Doost SB, Rahimi Sorkhani R, Vahdati AA, Sauer EW, Azizi Kharanaghi H, Maziar S, Gasparian B, Pinhasi R, Martin L, Orton D, Arbuckle BS, Benecke N, Manica A, Horwitz LK, Mashkour M, Bradley DG. 2018; Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science. 361:85–8. DOI: 10.1126/science.aas9411. PMID: 29976826.
Article
27. Fages A, Hanghøj K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, McCrory Constantz C, Gamba C, Al-Rasheid KAS, Albizuri S, Alfarhan AH, Allentoft M, Alquraishi S, Anthony D, Baimukhanov N, Barrett JH, Bayarsaikhan J, Benecke N, Bernáldez-Sánchez E, Berrocal-Rangel L, Biglari F, Boessenkool S, Boldgiv B, Brem G, Brown D, Burger J, Crubézy E, Daugnora L, Davoudi H, de Barros Damgaard P, de Los Ángeles de Chorro Y de Villa-Ceballos M, Deschler-Erb S, Detry C, Dill N, do Mar Oom M, Dohr A, Ellingvåg S, Erdenebaatar D, Fathi H, Felkel S, Fernández-Rodríguez C, García-Viñas E, Germonpré M, Granado JD, Hallsson JH, Hemmer H, Hofreiter M, Kasparov A, Khasanov M, Khazaeli R, Kosintsev P, Kristiansen K, Kubatbek T, Kuderna L, Kuznetsov P, Laleh H, Leonard JA, Lhuillier J, Liesau von Lettow-Vorbeck C, Logvin A, Lõugas L, Ludwig A, Luis C, Arruda AM, Marques-Bonet T, Matoso Silva R, Merz V, Mijiddorj E, Miller BK, Monchalov O, Mohaseb FA, Morales A, Nieto-Espinet A, Nistelberger H, Onar V, Pálsdóttir AH, Pitulko V, Pitskhelauri K, Pruvost M, Rajic Sikanjic P, Rapan Papeša A, Roslyakova N, Sardari A, Sauer E, Schafberg R, Scheu A, Schibler J, Schlumbaum A, Serrand N, Serres-Armero A, Shapiro B, Sheikhi Seno S, Shevnina I, Shidrang S, Southon J, Star B, Sykes N, Taheri K, Taylor W, Teegen WR, Trbojević Vukičević T, Trixl S, Tumen D, Undrakhbold S, Usmanova E, Vahdati A, Valenzuela-Lamas S, Viegas C, Wallner B, Weinstock J, Zaibert V, Clavel B, Lepetz S, Mashkour M, Helgason A, Stefánsson K, Barrey E, Willerslev E, Outram AK, Librado P, Orlando L. 2019; Tracking five millennia of horse management with extensive ancient genome time series. Cell. 177:1419–35.e31. DOI: 10.1016/j.cell.2019.03.049. PMID: 31056281. PMCID: PMC6547883.
Article
28. Verdugo MP, Mullin VE, Scheu A, Mattiangeli V, Daly KG, Maisano Delser P, Hare AJ, Burger J, Collins MJ, Kehati R, Hesse P, Fulton D, Sauer EW, Mohaseb FA, Davoudi H, Khazaeli R, Lhuillier J, Rapin C, Ebrahimi S, Khasanov M, Vahidi SMF, MacHugh DE, Ertuğrul O, Koukouli-Chrysanthaki C, Sampson A, Kazantzis G, Kontopoulos I, Bulatovic J, Stojanović I, Mikdad A, Benecke N, Linstädter J, Sablin M, Bendrey R, Gourichon L, Arbuckle BS, Mashkour M, Orton D, Horwitz LK, Teasdale MD, Bradley DG. 2019; Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science. 365:173–6. DOI: 10.1126/science.aav1002. PMID: 31296769.
Article
29. Kim JS, Dong JZ, Brener S, Coyte PC, Rampersaud YR. 2011; Cost-effectiveness analysis of a reduction in diagnostic imaging in degenerative spinal disorders. Healthc Policy. 7:e105–21. DOI: 10.12927/hcpol.2011.22619.
Article
30. Xu Y, Ren X, Wang H, Wang M, Li G. 2020; Evaluation of DNA degradation and establishment of a degradation analysis model for Lepidoptera specimens. Biotechniques. 68:138–7. DOI: 10.2144/btn-2019-0166. PMID: 31990210.
Article
31. Manyana S, Gounder L, Pillay M, Manasa J, Naidoo K, Chimukangara B. 2021; HIV-1 drug resistance genotyping in resource limited settings: current and future perspectives in sequencing technologies. Viruses. 13:1125. DOI: 10.3390/v13061125. PMID: 34208165. PMCID: PMC8230827.
Article
32. Inzaule SC, Ondoa P, Peter T, Mugyenyi PN, Stevens WS, de Wit TFR, Hamers RL. 2016; Affordable HIV drug-resistance testing for monitoring of antiretroviral therapy in sub-Saharan Africa. Lancet Infect Dis. 16:e267–75. DOI: 10.1016/S1473-3099(16)30118-9. PMID: 27569762.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr