J Korean Foot Ankle Soc.  2025 Mar;29(1):1-8. 10.14193/jkfas.2025.29.1.1.

Role of Arthroscopy in Ankle Fracture Surgeries

Affiliations
  • 1Department of Orthopedic Surgery, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
  • 2Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
  • 3Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
  • 4Department of Orthopedic Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
  • 5Department of Orthopedic Surgery, St. Carollo Hospital, Suncheon, Korea
  • 6Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea

Abstract

The fundamental principles for treating ankle fractures, as with other intra-articular fractures, are anatomical reduction and stable internal fixation. Despite successful reduction, between 14% and 40% of patients continue to experience persistent pain or unsatisfactory functional outcomes. Furthermore, approximately 1% of patients progress to post-traumatic arthritis, necessitating further surgical intervention. Ankle fractures are frequently accompanied by intra-articular injuries, including osteochondral lesions, ligament tears, and syndesmosis injuries. Arthroscopy is becoming increasingly prevalent in managing acute ankle fractures by assessing intra-articular damage and facilitating accurate reduction. This review examined the role and indications for arthroscopy in ankle fractures, particularly emphasizing its benefits in diagnosing and managing associated injuries, including osteochondral lesions, syndesmosis, and deltoid ligament injuries. Furthermore, arthroscopy facilitates fracture reduction, offering a minimally invasive approach with a shorter recovery period and enhanced visualization. Its use extends to pediatric fractures and complex cases such as Maisonneuve and calcaneal fractures, potentially improving outcomes while minimizing complications. Understanding the evolving indications and benefits of arthroscopy for ankle fractures can lead to improved clinical outcomes and reduced complications.

Keyword

Ankle fracture; Arthroscopy; Osteochondral lesion; Syndesmosis; Minimally invasive surgical procedures

Figure

  • Figure 1 Anteroposterior (A) and lateral (B) radiographs shows Danis-Weber type C lateral malleolar fracture. Plain radiographs do not show obvious osteochondral lesions. Arthroscopy shows a loose body (C) and osteochondral lesion of the medial talar dome (D). αLoose body, βTibia, γTalus, δOsteochondral lesion.

  • Figure 2 (A) Arthroscopic findings in ankle fracture through the anteromedial portal show an osteochondral lesion of talus. (B, C) Arthroscopic microfracture was performed after debridement. αTibia, βTalus, γOsteochondral lesion.

  • Figure 3 A widening of 2 mm or more, into which an arthroscopic probe can be inserted during arthroscopic examination, indicates a syndesmosis injury. αTibia, βTalus, γFibula, δArthroscopic probe.

  • Figure 4 (A) Arthroscopic finding show that the distal fibula is displaced anteriorly at the tibial incisura. (B) Arthroscopic finding of a syndesmosis with anatomical reduction. Yellow line is distal tibiofibular joint line. αTibia, βTalus, γFibula.

  • Figure 5 After identifying the deltoid ligament injury with an arthroscopic probe (A), the deltoid ligament is repaired with FiberWire and Knotless SutureTak Anchor (B). αTibia, βTalus, γInjured deltoid ligament, δRepaired deltoid ligament.

  • Figure 6 The arthroscopic findings show the medial malleolar fracture before (A) and after (B) arthroscopic reduction. αTibia, βTalus, γfractured medial malleolus.

  • Figure 7 (A) The sagittal CT image shows a displaced posterior malleolar fracture. (B, C) The arthroscopic findings show the posterior malleolar fracture before (B) and after (C) arthroscopic reduction. αTibia, βTalus, γFibula, δfractured posterior malleolus.

  • Figure 8 (A) The CT scan shows a pediatric Tillaux fracture. The arthroscopic findings show the pediatric Tillaux fracture before (B) and after (C) arthroscopic reduction. (D) After arthroscopic reduction, percutaneous fixation with screw and Kirschner wire was performed. αTibia, βTalus, γTillaux fracture fragment.

  • Figure 9 Plain radiographs (A, B) and CT scan (C) show widening of the medial clear space, proximal fibular fracture, and posterior malleolar fracture, indicating a Maisonneuve fracture. The arthroscopic findings show reduced posterior malleolar fracture (D), syndesmosis injury (E) and repaired deltoid ligament (F). (G) Plain radiograph shows percutaneous fixation of posterior malleolar fracture with screw and syndesmosis fixation with TightRope. αTibia, βPosterior malleolar fracture, γFibula, δTalus, eRepaired deltoid ligament.


Reference

Ceccarini P., Rinonapoli G., Antinolfi P., Caraffa A. 2021. Effectiveness of ankle arthroscopic debridement in acute, subacute ankle- bimalleolar, and trimalleolar fractures. Int Orthop. 45:721–9. doi: 10.1007/s00264-020-04882-6. DOI: 10.1007/s00264-020-04882-6. PMID: 33416908.
Tas DB., Smeeing DPJ., Emmink BL., Govaert GAM., Hietbrink F., Leenen LPH, et al. 2019. Intramedullary fixation versus plate fixation of distal fibular fractures: a systematic review and meta-analysis of randomized controlled trials and observational studies. J Foot Ankle Surg. 58:119–26. doi: 10.1053/j.jfas.2018.08.028. DOI: 10.1053/j.jfas.2018.08.028. PMID: 30583773.
Stufkens SA., Knupp M., Horisberger M., Lampert C., Hintermann B. 2010. Cartilage lesions and the development of osteoarthritis after internal fixation of ankle fractures: a prospective study. J Bone Joint Surg Am. 92:279–86. doi: 10.2106/JBJS.H.01635. DOI: 10.2106/JBJS.H.01635. PMID: 20124053.
Lee KM., Ahmed S., Park MS., Sung KH., Lee SY., Koo S. 2017. Effectiveness of arthroscopically assisted surgery for ankle fractures: a meta-analysis. Injury. 48:2318–22. doi: 10.1016/j.injury.2017.07.011. DOI: 10.1016/j.injury.2017.07.011. PMID: 28754239.
Da Cunha RJ., Karnovsky SC., Schairer W., Drakos MC. 2018. Ankle arthroscopy for diagnosis of full-thickness talar cartilage lesions in the setting of acute ankle fractures. Arthroscopy. 34:1950–7. doi: 10.1016/j.arthro.2017.12.003. DOI: 10.1016/j.arthro.2017.12.003. PMID: 29398212.
Braunstein M., Baumbach SF., Urresti-Gundlach M., Borgmann L., Böcker W., Polzer H. 2020. Arthroscopically assisted treatment of complex ankle fractures: intra-articular findings and 1-year follow-up. J Foot Ankle Surg. 59:9–15. doi: 10.1053/j.jfas.2019.05.003. DOI: 10.1053/j.jfas.2019.05.003. PMID: 31882154.
SooHoo NF., Krenek L., Eagan MJ., Gurbani B., Ko CY., Zingmond DS. 2009. Complication rates following open reduction and internal fixation of ankle fractures. J Bone Joint Surg Am. 91:1042–9. doi: 10.2106/JBJS.H.00653. DOI: 10.2106/JBJS.H.00653. PMID: 19411451.
Thordarson DB., Bains R., Shepherd LE. 2001. The role of ankle arthroscopy on the surgical management of ankle fractures. Foot Ankle Int. 22:123–5. doi: 10.1177/107110070102200207. DOI: 10.1177/107110070102200207. PMID: 11249221.
Thomas B., Yeo JM., Slater GL. 2005. Chronic pain after ankle fracture: an arthroscopic assessment case series. Foot Ankle Int. 26:1012–6. doi: 10.1177/107110070502601202. DOI: 10.1177/107110070502601202. PMID: 16390631.
Loren GJ., Ferkel RD. 2002. Arthroscopic assessment of occult intra-articular injury in acute ankle fractures. Arthroscopy. 18:412–21. doi: 10.1053/jars.2002.32317. DOI: 10.1053/jars.2002.32317. PMID: 11951201.
Hintermann B., Regazzoni P., Lampert C., Stutz G., Gächter A. 2000. Arthroscopic findings in acute fractures of the ankle. J Bone Joint Surg Br. 82:345–51. doi: 10.1302/0301-620x.82b3.10064. DOI: 10.1302/0301-620X.82B3.10064. PMID: 10813167.
Nosewicz TL., Beerekamp MS., De Muinck Keizer RJ., Schepers T., Maas M., Niek van Dijk C, et al. 2016. Prospective computed tomographic analysis of osteochondral lesions of the ankle joint associated with ankle fractures. Foot Ankle Int. 37:829–34. doi: 10.1177/1071100716644470. DOI: 10.1177/1071100716644470. PMID: 27113606.
Martijn HA., Lambers KTA., Dahmen J., Stufkens SAS., Kerkhoffs GMMJ. 2021. High incidence of (osteo)chondral lesions in ankle fractures. Knee Surg Sports Traumatol Arthrosc. 29:1523–34. doi: 10.1007/s00167-020-06187-y. DOI: 10.1007/s00167-020-06187-y. PMID: 32761358. PMCID: PMC8038951.
Darwich A., Adam J., Dally FJ., Hetjens S., Jawhar A. 2021. Incidence of concomitant chondral/osteochondral lesions in acute ankle fractures and their effect on clinical outcome: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2021;141:63-74. doi: 10.1007/s00402-020-03647-5. Erratum in: Arch Orthop Trauma Surg. 141:1437–8. doi: 10.1007/s00402-021-03985-y. DOI: 10.1007/s00402-021-03985-y. PMID: 34156530. PMCID: PMC8295080.
Gumann G., Hamilton GA. 2011. Arthroscopically assisted treatment of ankle injuries. Clin Podiatr Med Surg. 28:523–38. doi: 10.1016/j.cpm.2011.04.002. DOI: 10.1016/j.cpm.2011.04.002. PMID: 21777783.
Bonasia DE., Rossi R., Saltzman CL., Amendola A. 2011. The role of arthroscopy in the management of fractures about the ankle. J Am Acad Orthop Surg. 19:226–35. doi: 10.5435/00124635-201104000-00007. DOI: 10.5435/00124635-201104000-00007. PMID: 21464216.
Utsugi K., Sakai H., Hiraoka H., Yashiki M., Mogi H. 2007. Intra-articular fibrous tissue formation following ankle fracture: the significance of arthroscopic debridement of fibrous tissue. Arthroscopy. 23:89–93. doi: 10.1016/j.arthro.2006.07.055. DOI: 10.1016/j.arthro.2006.07.055. PMID: 17210432.
Dell'accio F., Vincent TL. 2010. Joint surface defects: clinical course and cellular response in spontaneous and experimental lesions. Eur Cell Mater. 20:210–7. doi: 10.22203/ecm.v020a17. DOI: 10.22203/eCM.v020a17. PMID: 20878619.
Jackson DW., Lalor PA., Aberman HM., Simon TM. 2001. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am. 83:53–64. doi: 10.2106/00004623-200101000-00008. DOI: 10.2106/00004623-200101000-00008. PMID: 11205859.
Takao M., Uchio Y., Naito K., Fukazawa I., Kakimaru T., Ochi M. 2004. Diagnosis and treatment of combined intra-articular disorders in acute distal fibular fractures. J Trauma. 57:1303–7. doi: 10.1097/01.ta.0000114062.42369.88. DOI: 10.1097/01.TA.0000114062.42369.88. PMID: 15625464.
Chen XZ., Chen Y., Liu CG., Yang H., Xu XD., Lin P. 2015. Arthroscopy-assisted surgery for acute ankle fractures: a systematic review. Arthroscopy. 31:2224–31. doi: 10.1016/j.arthro.2015.03.043. DOI: 10.1016/j.arthro.2015.03.043. PMID: 26051353.
Wood DA., Christensen JC., Schuberth JM. 2014. The use of arthroscopy in acute foot and ankle trauma: a review. Foot Ankle Spec. 7:495–506. doi: 10.1177/1938640014546863. DOI: 10.1177/1938640014546863. PMID: 25142915.
Kennedy JG., Soffe KE., Dalla Vedova P., Stephens MM., O'Brien T., Walsh MG, et al. 2000. Evaluation of the syndesmotic screw in low Weber C ankle fractures. J Orthop Trauma. 14:359–66. doi: 10.1097/00005131-200006000-00010. DOI: 10.1097/00005131-200006000-00010. PMID: 10926245.
Xie L., Xie H., Wang J., Chen C., Zhang C., Chen H, et al. 2018. Comparison of suture button fixation and syndesmotic screw fixation in the treatment of distal tibiofibular syndesmosis injury: a systematic review and meta-analysis. Int J Surg. 60:120–31. doi: 10.1016/j.ijsu.2018.11.007. DOI: 10.1016/j.ijsu.2018.11.007. PMID: 30439535.
Kim JH., Gwak HC., Lee CR., Choo HJ., Kim JG., Kim DY. 2016. A comparison of screw fixation and suture-button fixation in a syndesmosis injury in an ankle fracture. J Foot Ankle Surg. 55:985–90. doi: 10.1053/j.jfas.2016.05.002. DOI: 10.1053/j.jfas.2016.05.002. PMID: 27449525.
Schepers T. 2012. Acute distal tibiofibular syndesmosis injury: a systematic review of suture-button versus syndesmotic screw repair. Int Orthop. 36:1199–206. doi: 10.1007/s00264-012-1500-2. DOI: 10.1007/s00264-012-1500-2. PMID: 22318415. PMCID: PMC3353089.
Takao M., Ochi M., Naito K., Iwata A., Kawasaki K., Tobita M, et al. 2001. Arthroscopic diagnosis of tibiofibular syndesmosis disruption. Arthroscopy. 17:836–43. doi: 10.1016/s0749-8063(01)90007-6. DOI: 10.1016/S0749-8063(01)90007-6. PMID: 11600981.
Lui TH., Ip K., Chow HT. 2005. Comparison of radiologic and arthroscopic diagnoses of distal tibiofibular syndesmosis disruption in acute ankle fracture. Arthroscopy. 21:1370. doi: 10.1016/j.arthro.2005.08.016. DOI: 10.1016/j.arthro.2005.08.016. PMID: 16325090.
Han SH., Lee JW., Kim S., Suh JS., Choi YR. 2007. Chronic tibiofibular syndesmosis injury: the diagnostic efficiency of magnetic resonance imaging and comparative analysis of operative treatment. Foot Ankle Int. 28:336–42. doi: 10.3113/FAI.2007.0336. DOI: 10.3113/FAI.2007.0336. PMID: 17371657.
Ryan LP., Hills MC., Chang J., Wilson CD. 2014. The lambda sign: a new radiographic indicator of latent syndesmosis instability. Foot Ankle Int. 35:903–8. doi: 10.1177/1071100714543646. DOI: 10.1177/1071100714543646. PMID: 25037708.
Van Heest TJ., Lafferty PM. 2014. Injuries to the ankle syndesmosis. J Bone Joint Surg Am. 96:603–13. doi: 10.2106/JBJS.M.00094. DOI: 10.2106/JBJS.M.00094. PMID: 24695928.
Franke J., von Recum J., Suda AJ., Grützner PA., Wendl K. 2012. Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am. 94:1386–90. doi: 10.2106/JBJS.K.01122. DOI: 10.2106/JBJS.K.01122. PMID: 22854991.
Sin YH., Lui TH. 2019. Arthroscopically assisted reduction of sagittal-plane disruption of distal tibiofibular syndesmosis. Arthrosc Tech. 8:e521–5. doi: 10.1016/j.eats.2019.01.014. DOI: 10.1016/j.eats.2019.01.014. PMID: 31194168. PMCID: PMC6552202.
van den Bekerom MP. 2011. Diagnosing syndesmotic instability in ankle fractures. World J Orthop. 2:51–6. doi: 10.5312/wjo.v2.i7.51. DOI: 10.5312/wjo.v2.i7.51. PMID: 22474636. PMCID: PMC3302043.
Stufkens SA., van den Bekerom MP., Knupp M., Hintermann B., van Dijk CN. 2012. The diagnosis and treatment of deltoid ligament lesions in supination-external rotation ankle fractures: a review. Strategies Trauma Limb Reconstr. 7:73–85. doi: 10.1007/s11751-012-0140-9. DOI: 10.1007/s11751-012-0140-9. PMID: 22767333. PMCID: PMC3535131.
van den Bekerom MP., Mutsaerts EL., van Dijk CN. 2009. Evaluation of the integrity of the deltoid ligament in supination external rotation ankle fractures: a systematic review of the literature. Arch Orthop Trauma Surg. 129:227–35. doi: 10.1007/s00402-008-0768-6. DOI: 10.1007/s00402-008-0768-6. PMID: 18953550.
DeAngelis NA., Eskander MS., French BG. 2007. Does medial tenderness predict deep deltoid ligament incompetence in supination-external rotation type ankle fractures? J Orthop Trauma. 21:244–7. doi: 10.1097/BOT.0b013e3180413835. DOI: 10.1097/BOT.0b013e3180413835. PMID: 17414551.
Schuberth JM., Collman DR., Rush SM., Ford LA. 2004. Deltoid ligament integrity in lateral malleolar fractures: a comparative analysis of arthroscopic and radiographic assessments. J Foot Ankle Surg. 43:20–9. doi: 10.1053/j.jfas.2003.11.005. DOI: 10.1053/j.jfas.2003.11.005. PMID: 14752760.
Luckino FA 3rd., Hardy MA. 2015. Use of a flexible implant and bioabsorbable anchor for deltoid rupture repair in bimalleolar equivalent Weber B ankle fractures. J Foot Ankle Surg. 54:513–6. doi: 10.1053/j.jfas.2014.06.025. DOI: 10.1053/j.jfas.2014.06.025. PMID: 25128914.
Bluman EM. 2012. Deltoid ligament injuries in ankle fractures: should I leave it or fix it? Foot Ankle Int. 33:236–8. doi: 10.3113/FAI.2012.0236. DOI: 10.3113/FAI.2012.0236. PMID: 22734287.
Li CCH., Lui TH. 2023. Arthroscopic deltoid ligament reconstruction in rotational ankle instability. Arthrosc Tech. 12:e1179–84. doi: 10.1016/j.eats.2023.03.007. DOI: 10.1016/j.eats.2023.03.007. PMID: 37533912. PMCID: PMC10391247.
Leontaritis N., Hinojosa L., Panchbhavi VK. 2009. Arthroscopically detected intra-articular lesions associated with acute ankle fractures. J Bone Joint Surg Am. 91:333–9. doi: 10.2106/JBJS.H.00584. DOI: 10.2106/JBJS.H.00584. PMID: 19181977.
Dawe EJ., Jukes CP., Ganesan K., Wee A., Gougoulias N. 2015. Ankle arthroscopy to manage sequelae after ankle fractures. Knee Surg Sports Traumatol Arthrosc. 23:3393–7. doi: 10.1007/s00167-014-3140-0. DOI: 10.1007/s00167-014-3140-0. PMID: 24957912.
Ono A., Nishikawa S., Nagao A., Irie T., Sasaki M., Kouno T. 2004. Arthroscopically assisted treatment of ankle fractures: arthroscopic findings and surgical outcomes. Arthroscopy. 20:627–31. doi: 10.1016/j.arthro.2004.04.070. DOI: 10.1016/j.arthro.2004.04.070. PMID: 15241315.
Salvi AE., Metelli GP., Bettinsoli R., Hacking SA. 2009. Arthroscopic-assisted fibular synthesis and syndesmotic stabilization of a complex unstable ankle injury. Arch Orthop Trauma Surg. 129:393–6. doi: 10.1007/s00402-008-0610-1. DOI: 10.1007/s00402-008-0610-1. PMID: 18368413.
Kong C., Kolla L., Wing K., Younger AS. 2014. Arthroscopy-assisted closed reduction and percutaneous nail fixation of unstable ankle fractures: description of a minimally invasive procedure. Arthrosc Tech. 3:e181–4. doi: 10.1016/j.eats.2013.09.018. DOI: 10.1016/j.eats.2013.09.018. PMID: 24749042. PMCID: PMC3986501.
Swart EF., Vosseller JT. 2014. Arthroscopic assessment of medial malleolar reduction. Arch Orthop Trauma Surg. 134:1287–92. doi: 10.1007/s00402-014-2031-7. DOI: 10.1007/s00402-014-2031-7. PMID: 24927674.
Liu C., You JX., Yang J., Zhu HF., Yu HJ., Fan SW, et al. 2020. Arthroscopy-assisted reduction in the management of isolated medial malleolar fracture. Arthroscopy. 36:1714–21. doi: 10.1016/j.arthro.2020.01.053. DOI: 10.1016/j.arthro.2020.01.053. PMID: 32057988.
Holt ES. 1994. Arthroscopic visualization of the tibial plafond during posterior malleolar fracture fixation. Foot Ankle Int. 15:206–8. doi: 10.1177/107110079401500409. DOI: 10.1177/107110079401500409. PMID: 7951955.
Martin KD. 2020. Posterior arthroscopic reduction and internal fixation for treatment of posterior malleolus fractures. Foot Ankle Int. 41:115–20. doi: 10.1177/1071100719891978. DOI: 10.1177/1071100719891978. PMID: 31826672.
Olgun ZD., Maestre S. 2018. Management of pediatric ankle fractures. Curr Rev Musculoskelet Med. 11:475–84. doi: 10.1007/s12178-018-9510-3. DOI: 10.1007/s12178-018-9510-3. PMID: 29987644. PMCID: PMC6105478.
Su AW., Larson AN. 2015. Pediatric ankle fractures: concepts and treatment principles. Foot Ankle Clin. 20:705–19. doi: 10.1016/j.fcl.2015.07.004. DOI: 10.1016/j.fcl.2015.07.004. PMID: 26589088. PMCID: PMC4912125.
Al-Aubaidi Z. 2013. Arthroscopically assisted reduction of type 1A ankle fractures in children: case report. J Orthop Case Rep. 3:12–5. doi: 10.13107/jocr.2250-0685.094. DOI: 10.13107/jocr.2250-0685.094. PMID: 27298899. PMCID: PMC4719235.
Accadbled F., N'Dele D. 2018. Arthroscopic treatment of pediatric fractures. J Pediatr Orthop. 38 Suppl 1:S29–32. doi: 10.1097/BPO.0000000000001163. DOI: 10.1097/BPO.0000000000001163. PMID: 29877944.
Shamrock AG., Khazi ZM., Carender CN., Amendola A., Glass N., Duchman KR. 2022. Utilization of arthroscopy during ankle fracture fixation among early career surgeons: an evaluation of the American Board of Orthopaedic Surgery part II oral examination database. Iowa Orthop J. 42:103–8. DOI: 10.1177/2473011421S00446. PMID: 35821943. PMCID: PMC9210429.
Jennings MM., Lagaay P., Schuberth JM. 2007. Arthroscopic assisted fixation of juvenile intra-articular epiphyseal ankle fractures. J Foot Ankle Surg. 46:376–86. doi: 10.1053/j.jfas.2007.07.001. DOI: 10.1053/j.jfas.2007.07.001. PMID: 17761323.
Ogawa T., Shimizu S. 2017. Arthroscopically assisted surgical fixation of a juvenile Tillaux fracture and implant removal: a case report. J Clin Orthop Trauma. 8:S32–7. doi: 10.1016/j.jcot.2017.04.002. DOI: 10.1016/j.jcot.2017.04.002. PMID: 28878537. PMCID: PMC5574847.
Gonzalez TA., Macaulay AA., Ehrlichman LK., Drummond R., Mittal V., DiGiovanni CW. 2016. Arthroscopically assisted versus standard open reduction and internal fixation techniques for the acute ankle fracture. Foot Ankle Int. 37:554–62. doi: 10.1177/1071100715620455. DOI: 10.1177/1071100715620455. PMID: 26660864.
Williams CE., Joo P., Oh I., Miller C., Kwon JY. 2021. Arthroscopically assisted internal fixation of foot and ankle fractures: a systematic review. Foot Ankle Orthop. 6:2473011420950214. doi: 10.1177/2473011420950214. DOI: 10.1177/2473011420950214. PMID: 35097419. PMCID: PMC8727837.
Smith KS., Drexelius K., Challa S., Moon DK., Metzl JA., Hunt KJ. 2020. Outcomes following ankle fracture fixation with or without ankle arthroscopy. Foot Ankle Orthop. 5:2473011420904046. doi: 10.1177/2473011420904046. DOI: 10.1177/2473011420904046. PMID: 35097364. PMCID: PMC8697299.
Walley KC., Baumann AN., Curtis DP., Mamdouhi T., Anastasio AT., Adams SB. 2024. Arthroscopic management of pediatric ankle fractures: a systematic review. Ann Jt. 9:17. doi: 10.21037/aoj-23-51. DOI: 10.21037/aoj-23-51. PMID: 38690074. PMCID: PMC11058528.
Sagi HC., Shah AR., Sanders RW. 2012. The functional consequence of syndesmotic joint malreduction at a minimum 2-year follow-up. J Orthop Trauma. 26:439–43. doi: 10.1097/BOT.0b013e31822a526a. DOI: 10.1097/BOT.0b013e31822a526a. PMID: 22357084.
Cornu O., Manon J., Tribak K., Putineanu D. 2021. Traumatic injuries of the distal tibiofibular syndesmosis. Orthop Traumatol Surg Res. 107:102778. doi: 10.1016/j.otsr.2020.102778. DOI: 10.1016/j.otsr.2020.102778. PMID: 33333279.
Nielson JH., Sallis JG., Potter HG., Helfet DL., Lorich DG. 2004. Correlation of interosseous membrane tears to the level of the fibular fracture. J Orthop Trauma. 18:68–74. doi: 10.1097/00005131-200402000-00002. DOI: 10.1097/00005131-200402000-00002. PMID: 14743024.
Yoshimura I., Naito M., Kanazawa K., Takeyama A., Ida T. 2008. Arthroscopic findings in Maisonneuve fractures. J Orthop Sci. 13:3–6. doi: 10.1007/s00776-007-1192-4. DOI: 10.1007/s00776-007-1192-4. PMID: 18274848.
Full Text Links
  • JKFAS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr