1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119.
Article
2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018; 14:88–98.
Article
3. Lemieux I. Reversing type 2 diabetes: the time for lifestyle medicine has come! Nutrients. 2020; 12:1974.
Article
4. Dockray G, Dimaline R, Varro A. Gastrin: old hormone, new functions. Pflugers Arch. 2005; 449:344–55.
Article
5. Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors. Physiol Rev. 2006; 86:805–47.
Article
6. Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Expression of gastrin family peptides in pancreatic islets and their role in β-cell function and survival. Pancreas. 2018; 47:190–9.
Article
7. Larsson LI, Rehfeld JF, Sundler F, Hakanson R. Pancreatic gastrin in foetal and neonatal rats. Nature. 1976; 262:609–10.
Article
8. Reubi JC, Waser B, Gugger M, Friess H, Kleeff J, Kayed H, et al. Distribution of CCK1 and CCK2 receptors in normal and diseased human pancreatic tissue. Gastroenterology. 2003; 125:98–106.
Article
9. Gaudreau MC, Gudi RR, Li G, Johnson BM, Vasu C. Gastrin producing syngeneic mesenchymal stem cells protect non-obese diabetic mice from type 1 diabetes. Autoimmunity. 2022; 55:95–108.
Article
10. Tellez N, Joanny G, Escoriza J, Vilaseca M, Montanya E. Gastrin treatment stimulates β-cell regeneration and improves glucose tolerance in 95% pancreatectomized rats. Endocrinology. 2011; 152:2580–8.
Article
11. de Weerth A, Jonas L, Schade R, Schoneberg T, Wolf G, Pace A, et al. Gastrin/cholecystokinin type B receptors in the kidney: molecular, pharmacological, functional characterization, and localization. Eur J Clin Invest. 1998; 28:592–601.
Article
12. Velez EJ, Schnebert S, Goguet M, Balbuena-Pecino S, Dias K, Beauclair L, et al. Chaperone-mediated autophagy protects against hyperglycemic stress. Autophagy. 2024; 20:752–68.
Article
13. Liu C, Chen K, Wang H, Zhang Y, Duan X, Xue Y, et al. Gastrin attenuates renal ischemia/reperfusion injury by a PI3K/Akt/Bad-mediated anti-apoptosis signaling. Front Pharmacol. 2020; 11:540479.
Article
14. Gu D, Fang D, Zhang M, Guo J, Ren H, Li X, et al. Gastrin, via activation of PPARα, protects the kidney against hypertensive injury. Clin Sci (Lond). 2021; 135:409–27.
Article
15. Fu M, Yu J, Chen Z, Tang Y, Dong R, Yang Y, et al. Epoxyeicosatrienoic acids improve glucose homeostasis by preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells. Mol Cell Endocrinol. 2021; 523:111149.
Article
16. Kim EJ, Lee YJ, Lee JH, Han HJ. Effect of epinephrine on alpha-methyl-D-glucopyranoside uptake in renal proximal tubule cells. Cell Physiol Biochem. 2004; 14:395–406.
Article
17. Nishimura S, Bilguvar K, Ishigame K, Sestan N, Gunel M, Louvi A. Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development. PLoS One. 2015; 10:e0124295.
Article
18. Jiang X, Liu Y, Zhang XY, Liu X, Liu X, Wu X, et al. Intestinal gastrin/CCKBR (cholecystokinin B receptor) ameliorates salt-sensitive hypertension by inhibiting intestinal Na+/H+ exchanger 3 activity through a PKC (protein kinase C)-mediated NHERF1 and NHERF2 pathway. Hypertension. 2022; 79:1668–79.
Article
19. Zhang QY, Guo Y, Jiang XL, Liu X, Zhao SG, Zhou XL, et al. Intestinal Cckbr-specific knockout mouse as a novel model of salt-sensitive hypertension via sodium over-absorption. J Geriatr Cardiol. 2023; 20:538–47.
20. von Schrenck T, Ahrens M, de Weerth A, Bobrowski C, Wolf G, Jonas L, et al. CCKB/gastrin receptors mediate changes in sodium and potassium absorption in the isolated perfused rat kidney. Kidney Int. 2000; 58:995–1003.
Article
21. Chen Y, Asico LD, Zheng S, Villar VA, He D, Zhou L, et al. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis. Hypertension. 2013; 62:927–33.
Article
22. Brand SJ, Tagerud S, Lambert P, Magil SG, Tatarkiewicz K, Doiron K, et al. Pharmacological treatment of chronic diabetes by stimulating pancreatic beta-cell regeneration with systemic co-administration of EGF and gastrin. Pharmacol Toxicol. 2002; 91:414–20.
23. Rehfeld JF. CCK, gastrin and diabetes mellitus. Biomark Med. 2016; 10:1125–7.
Article
24. Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes. 2008; 57:3281–8.
Article
25. Nagata T, Fukazawa M, Honda K, Yata T, Kawai M, Yamane M, et al. Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats. Am J Physiol Endocrinol Metab. 2013; 304:E414–23.
Article
26. Onishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, et al. Effect of renal tubule-specific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice. Am J Physiol Renal Physiol. 2019; 317:F419–34.
27. Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011; 22:104–12.
Article
28. Chin E, Zhou J, Bondy C. Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. J Clin Invest. 1993; 91:1810–5.
Article
29. Vallon V, Nakagawa T. Renal tubular handling of glucose and fructose in health and disease. Compr Physiol. 2021; 12:2995–3044.
Article
30. Wang Y, Heilig K, Saunders T, Minto A, Deb DK, Chang A, et al. Transgenic overexpression of GLUT1 in mouse glomeruli produces renal disease resembling diabetic glomerulosclerosis. Am J Physiol Renal Physiol. 2010; 299:F99–111.
Article
31. de Souza Cordeiro LM, Bainbridge L, Devisetty N, McDougal DH, Peters DJM, Chhabra KH. Loss of function of renal Glut2 reverses hyperglycaemia and normalises body weight in mouse models of diabetes and obesity. Diabetologia. 2022; 65:1032–47.
Article