3. Yamaguchi T, Hempson SJ, Reif GA, Hedge AM, Wallace DP. 2006; Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol. 17:178–187. DOI:
10.1681/ASN.2005060645. PMID:
16319189.
Article
4. Cabrita I, Talbi K, Kunzelmann K, Schreiber R. 2021; Loss of PKD1 and PKD2 share common effects on intracellular Ca
2+ signaling. Cell Calcium. 97:102413. DOI:
10.1016/j.ceca.2021.102413. PMID:
33915319.
6. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. 2000; Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem. 275:17517–17526. DOI:
10.1074/jbc.275.23.17517. PMID:
10837492.
Article
7. Won J, Kim J, Jeong H, Kim J, Feng S, Jeong B, Kwak M, Ko J, Im W, So I, Lee HH. 2023; Molecular architecture of the G
αi-bound TRPC5 ion channel. Nat Commun. 14:2550. DOI:
10.1038/s41467-023-38281-3. PMID:
37137991. PMCID:
PMC10156788.
9. Kwak M, Hong C, Myeong J, Park EYJ, Jeon JH, So I. 2018; G
αi-mediated TRPC4 activation by polycystin-1 contributes to endothelial function via STAT1 activation. Sci Rep. 8:3480. DOI:
10.1038/s41598-018-21873-1. PMID:
29472562. PMCID:
PMC5823873.
10. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S. 2002; Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 4:191–197. DOI:
10.1038/ncb754. PMID:
11854751.
Article
12. Alfonso S, Benito O, Alicia S, Angélica Z, Patricia G, Diana K, Vaca L. 2008; Regulation of the cellular localization and function of human transient receptor potential channel 1 by other members of the TRPC family. Cell Calcium. 43:375–387. Erratum in:
Cell Calcium. 2008;44:519. DOI:
10.1016/j.ceca.2008.05.004.
Article
13. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. 2003; Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 33:129–137. DOI:
10.1038/ng1076. PMID:
12514735.
Article
15. Delling M, Indzhykulian AA, Liu X, Li Y, Xie T, Corey DP, Clapham DE. 2016; Primary cilia are not calcium-responsive mechanosensors. Nature. 531:656–660. DOI:
10.1038/nature17426. PMID:
27007841. PMCID:
PMC4851444.
Article
16. Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP. 1999; Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci U S A. 96:3934–3939. DOI:
10.1073/pnas.96.7.3934. PMID:
10097141. PMCID:
PMC22398.
Article
17. Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P. 2008; Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep. 9:472–479. DOI:
10.1038/embor.2008.29. PMID:
18323855. PMCID:
PMC2373364.
Article
18. Kobori T, Smith GD, Sandford R, Edwardson JM. 2009; The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem. 284:35507–35513. DOI:
10.1074/jbc.M109.060228. PMID:
19850920. PMCID:
PMC2790980.
Article
20. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG. 2000; Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature. 408:990–994. DOI:
10.1038/35050128. PMID:
11140688.
Article
21. Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J. 2004; Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J. 18:740–742. DOI:
10.1096/fj.03-0319fje. PMID:
14766803.
Article
22. Hidaka S, Könecke V, Osten L, Witzgall R. 2004; PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J Biol Chem. 279:35009–35016. DOI:
10.1074/jbc.M314206200. PMID:
15194699.
Article
23. Köttgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Höpker K, Simmen KC, Tschucke CC, Sandford R, Kim E, Thomas G, Walz G. 2005; Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 24:705–716. DOI:
10.1038/sj.emboj.7600566. PMID:
15692563. PMCID:
PMC549624.
Article
24. Streets AJ, Moon DJ, Kane ME, Obara T, Ong AC. 2006; Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet. 15:1465–1473. DOI:
10.1093/hmg/ddl070. PMID:
16551655. PMCID:
PMC2424206.
Article
25. Ha K, Nobuhara M, Wang Q, Walker RV, Qian F, Schartner C, Cao E, Delling M. 2020; The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. Elife. 9:e60684. DOI:
10.7554/eLife.60684. PMID:
33164752. PMCID:
PMC7728438.
Article
28. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG. 2002; PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell. 109:157–168. DOI:
10.1016/S0092-8674(02)00716-X. PMID:
12007403.
Article
29. Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M. 2012; Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem. 287:3530–3540. DOI:
10.1074/jbc.M111.283218. PMID:
22157757. PMCID:
PMC3271006.
Article
30. Kim J, Kwak M, Jeon JP, Myeong J, Wie J, Hong C, Kim SY, Jeon JH, Kim HJ, So I. 2014; Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. Pflugers Arch. 466:491–504. Erratum in:
Pflugers Arch. 2014;466:505-506. DOI:
10.1007/s00424-013-1398-6.
Article
31. Myeong J, Ko J, Kwak M, Kim J, Woo J, Ha K, Hong C, Yang D, Kim HJ, Jeon JH, So I. 2018; Dual action of the G
αq-PLCβ-PI(4,5)P2 pathway on TRPC1/4 and TRPC1/5 heterotetramers. Sci Rep. 8:12117. DOI:
10.1038/s41598-018-30625-0. PMID:
30108272. PMCID:
PMC6092394.
Article
32. Park CH, Kim J, Lee JE, Kwak M, So I. 2023; Pore residues of transient receptor potential channels canonical 1 and 4 heteromer determine channel properties. Am J Physiol Cell Physiol. 325:C42–C51. DOI:
10.1152/ajpcell.00488.2022. PMID:
37212545.
Article
33. Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W, Zolles G, Schulte U, Bruns D, Flockerzi V, Fakler B. 2022; Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron. 110:4162–4175.e7. DOI:
10.1016/j.neuron.2022.09.029. PMID:
36257322.
Article
34. Barrera NP, Shaifta Y, McFadzean I, Ward JP, Henderson RM, Edwardson JM. 2007; AFM imaging reveals the tetrameric structure of the TRPC1 channel. Biochem Biophys Res Commun. 358:1086–1090. DOI:
10.1016/j.bbrc.2007.05.039. PMID:
17517368.
Article
35. Onken MD, Makepeace CM, Kaltenbronn KM, Choi J, Hernandez-Aya L, Weilbaecher KN, Piggott KD, Rao PK, Yuede CM, Dixon AJ, Osei-Owusu P, Cooper JA, Blumer KJ. 2021; Targeting primary and metastatic uveal melanoma with a G protein inhibitor. J Biol Chem. 296:100403. DOI:
10.1016/j.jbc.2021.100403. PMID:
33577798. PMCID:
PMC7948511.
Article
37. Padhy B, Xie J, Wang R, Lin F, Huang CL. 2022; Channel function of polycystin-2 in the endoplasmic reticulum protects against autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 33:1501–1516. DOI:
10.1681/ASN.2022010053. PMID:
35835458. PMCID:
PMC9342640.
Article
38. Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. 2018; Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. Elife. 7:e33183. DOI:
10.7554/eLife.33183. PMID:
29443690. PMCID:
PMC5812715.
Article
39. Zhou X, Lin P, Yamazaki D, Park KH, Komazaki S, Chen SR, Takeshima H, Ma J. 2014; Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis. Circ Res. 114:706–716. Erratum in:
Circ Res. 2020;126:e119. DOI:
10.1161/CIRCRESAHA.114.301816. PMID:
24526676. PMCID:
PMC3955254.
Article
40. Li Y, Santoso NG, Yu S, Woodward OM, Qian F, Guggino WB. 2009; Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem. 284:36431–36441. DOI:
10.1074/jbc.M109.068916. PMID:
19854836. PMCID:
PMC2794759.
Article
41. Mekahli D, Sammels E, Luyten T, Welkenhuyzen K, van den Heuvel LP, Levtchenko EN, Gijsbers R, Bultynck G, Parys JB, De Smedt H, Missiaen L. 2012; Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release. Cell Calcium. 51:452–458. DOI:
10.1016/j.ceca.2012.03.002. PMID:
22456092.
Article
42. Nair JS, DaFonseca CJ, Tjernberg A, Sun W, Darnell JE Jr, Chait BT, Zhang JJ. 2002; Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-gamma. Proc Natl Acad Sci U S A. 99:5971–5976. DOI:
10.1073/pnas.052159099. PMID:
11972023. PMCID:
PMC122886.
Article
43. Dai S, Venturini E, Yadav S, Lin X, Clapp D, Steckiewicz M, Gocher-Demske AM, Hardie DG, Edelman AM. 2022; Calcium/calmodulin-dependent protein kinase kinase 2 mediates pleiotropic effects of epidermal growth factor in cancer cells. Biochim Biophys Acta Mol Cell Res. 1869:119252. DOI:
10.1016/j.bbamcr.2022.119252. PMID:
35271909.
Article
44. Tokumitsu H, Sakagami H. 2022; Molecular mechanisms underlying Ca
2+/calmodulin-dependent protein kinase kinase signal transduction. Int J Mol Sci. 23:11025. DOI:
10.3390/ijms231911025. PMID:
36232320. PMCID:
PMC9570080.
45. Kelly MJ, Wagner EJ. 2024; Canonical transient receptor potential channels and hypothalamic control of homeostatic functions. J Neuroendocrinol. 36:e13392. DOI:
10.1111/jne.13392. PMID:
38631680.
Article
46. Bao W, Wang HH, Tian FJ, He XY, Qiu MT, Wang JY, Zhang HJ, Wang LH, Wan XP. 2013; A TrkB-STAT3-miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells. Mol Cancer. 12:155. DOI:
10.1186/1476-4598-12-155. PMID:
24321270. PMCID:
PMC3879200.
Article
48. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. 2001; Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol. 3:121–127. DOI:
10.1038/35055019. PMID:
11175743.
Article
49. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB. 2002; Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res. 91:70–76. DOI:
10.1161/01.RES.0000023391.40106.A8. PMID:
12114324.
Article
50. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y. 2006; Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol. 2:596–607. DOI:
10.1038/nchembio821. PMID:
16998480.
Article
51. Sakaguchi R, Takahashi N, Yoshida T, Ogawa N, Ueda Y, Hamano S, Yamaguchi K, Sawamura S, Yamamoto S, Hara Y, Kawamoto T, Suzuki R, Nakao A, Mori MX, Furukawa T, Shimizu S, Inoue R, Mori Y. 2024; Dynamic remodeling of TRPC5 channel-caveolin-1-eNOS protein assembly potentiates the positive feedback interaction between Ca
2+ and NO signals. J Biol Chem. 300:107705. DOI:
10.1016/j.jbc.2024.107705. PMID:
39178948. PMCID:
PMC11420454.
52. MacKay CE, Leo MD, Fernández-Peña C, Hasan R, Yin W, Mata-Daboin A, Bulley S, Gammons J, Mancarella S, Jaggar JH. 2020; Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure. Elife. 9:e56655. DOI:
10.7554/eLife.60401. PMID:
32602840. PMCID:
PMC7326490.
Article
53. MacKay CE, Floen M, Leo MD, Hasan R, Garrud TAC, Fernández-Peña C, Singh P, Malik KU, Jaggar JH. 2022; A plasma membrane-localized polycystin-1/polycystin-2 complex in endothelial cells elicits vasodilation. Elife. 11:e74765. DOI:
10.7554/eLife.74765. PMID:
35229718. PMCID:
PMC8933003.
Article
58. Shiratori-Hayashi M, Yamaguchi C, Eguchi K, Shiraishi Y, Kohno K, Mikoshiba K, Inoue K, Nishida M, Tsuda M. 2021; Astrocytic STAT3 activation and chronic itch require IP
3R1/TRPC-dependent Ca
2+ signals in mice. J Allergy Clin Immunol. 147:1341–1353. DOI:
10.1016/j.jaci.2020.06.039. PMID:
32781002.
Article
59. Yang K, Lu W, Jia J, Zhang J, Zhao M, Wang S, Jiang H, Xu L, Wang J. 2015; Noggin inhibits hypoxia-induced proliferation by targeting store-operated calcium entry and transient receptor potential cation channels. Am J Physiol Cell Physiol. 308:C869–C878. DOI:
10.1152/ajpcell.00349.2014. PMID:
25740156. PMCID:
PMC4451349.
Article
60. Bilen M, Benhammouda S, Slack RS, Germain M. 2022; The integrated stress response as a key pathway downstream of mitochondrial dysfunction. Curr Opin Physiol. 27:100555. DOI:
10.1016/j.cophys.2022.100555.
Article
62. Preissler S, Rato C, Yan Y, Perera LA, Czako A, Ron D. 2020; Calcium depletion challenges endoplasmic reticulum proteostasis by destabilising BiP-substrate complexes. Elife. 9:e62601. DOI:
10.7554/eLife.62601. PMID:
33295873. PMCID:
PMC7758071.
Article
63. Feliziani C, Fernandez M, Quassollo G, Holstein D, Bairo SM, Paton JC, Paton AW, de Batista J, Lechleiter JD, Bollo M. 2022; Ca
2+ signalling system initiated by endoplasmic reticulum stress stimulates PERK activation. Cell Calcium. 106:102622. DOI:
10.1016/j.ceca.2022.102622. PMID:
35908318. PMCID:
PMC9982837.
64. Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. 2024; The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal. 17:eadp3967. DOI:
10.1126/scisignal.adp3967. PMID:
39288219.
Article