Korean J Physiol Pharmacol.  2024 Mar;28(2):129-143. 10.4196/kjpp.2024.28.2.129.

Effects of gas signaling molecule SO2 in cardiac functions of hyperthyroid rats

Affiliations
  • 1Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China
  • 2School of Pharmaceutical Science of University of South China, Hengyang 421000, Hunan, China
  • 3Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, China

Abstract

Sulfur dioxide (SO2), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO2 on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO2 , and Hippo pathways from in vitro and in vivo experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO2 -producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO2 donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO2 inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.

Keyword

Apoptosis; Endoplasmic reticulum stress; Hippo signaling pathway; Hyperthyroidism-induced cardiomyopathy; Sulfur dioxide

Figure

  • Fig. 1 SO2 contents and AAT1/2 expressions in myocardial tissues of rats in each group. (A) ELISA assay for SO2 contents. (B–D) Western-Blot results of changes in AAT1/2 expressions in myocardial tissues of hyperthyroid rats (n = 3); *, #, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. (E–G) Western-Blot results of changes in AAT1/2 expressions in myocardial tissues of each group of H9c2 cardiomyocytes (n = 3); *, #, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. SO2, sulfur dioxide; AAT, aspartate aminotransferase; L-Thy, levothyroxine; HDX, hydrogen deuterium exchange.

  • Fig. 2 Echocardiograms of rats in each group. L-Thy, levothyroxine; SO2, sulfur dioxide; HDX, hydrogen deuterium exchange.

  • Fig. 3 Effect of SO2 on myocardial fibrosis in hyperthyroid rats. (A) Masson staining results of myocardial tissues in the control, L-Thy, L-Thy + SO2, and L-Thy + SO2 + HDX groups under 10 × 40x field of view (blue-stained part referred to the collagen fibers, and black arrows marked the collagen fibers), n = 3. Scale bar = 50 um. (B) Masson staining results of collagen volume fraction, *,#, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. (C–H) Western-Blot results of changes in expressions of Collagen I, Collagen III, MMP2, MMP3, and TIMP2 in myocardial tissues of rats in each group, n = 3. *, #, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. L-Thy, levothyroxine; SO2, sulfur dioxide; HDX, hydrogen deuterium exchange.

  • Fig. 4 SO2 reduces hyperthyroidism apoptosis in rat cardiomyocytes. (A–D) TEM results of myocardial tissues of rats in control group, L-Thy group, L-Thy + SO2 group, and L-Thy + SO2 + HDX group, respectively (red arrow: mitochondria; ×7,000). Scale bar = 0.5 μM. (E–I) Western-Blot results for changes in expressions of BAX, Bcl2, Caspase3, and Caspase9 in myocardial tissues (n = 3). *, #, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. TEM, transmission electron microscopy; L-Thy, levothyroxine; SO2, sulfur dioxide; HDX, hydrogen deuterium exchange.

  • Fig. 5 SO2 inhibits hyperthyroidism-induced apoptosis in cardiomyocytes. (A) Immunofluorescence observation for the expressions of BAX and Caspase3 in each group of H9c2 cardiomyocytes. Scale bar = 50 μM. (B–D) Western-Blot results of changes in expressions of BAX and Bcl2 in each group of H9c2 cardiomyocytes (n = 3). *, #, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. L-Thy, levothyroxine; SO2, sulfur dioxide; HDX, hydrogen deuterium exchange.

  • Fig. 6 SO2 reduces endoplasmic reticulum stress in cardiomyocytes of hyperthyroid rats. (A–D) Western-Blot results for changes in expressions CHOP, GRP78/BIP, and ERP72 in cardiomyocytes of each group (n = 3). *, #, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. (E–G) Western-Blot results for changes in expressions of CHOP and ERP72 in each group of H9c2 cardiomyocytes (n = 3). *, #, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. L-Thy, levothyroxine; SO2, sulfur dioxide; HDX, hydrogen deuterium exchange.

  • Fig. 7 Reversing effect of SO2 in up-regulation of Hippo pathway expression induced by hyperthyroid. (A–D) Western-Blot results for changes in expressions of MST1, LATS1, and P-YAP in myocardial tissues of rats (with n = 3); *, #, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. (E–H) Western-Blot results for changes in expressions of MST1, LATS1, and P-YAP in H9c2 cardiomyocytes in each group; n = 3. *,#, and & meant p < 0.05 vs. the values in the control, L-Thy, and L-Thy + SO2 groups, respectively. (I, J) Cells were transfected with siRNA negative control (si-NC) or si-YAP1 for 24 h, and the expression of YAP1 was measured by Western blot analysis (I) and quantitatively analyzed (J). n = 3. * meant p < 0.05 vs. the values in the si-NC groups, respectively. (K, L) Western-Blot results for changes in expressions of ERP72 in H9c2 cardiomyocytes in each group; n = 3. * and # meant p < 0.05 vs. the values in the control, and L-Thy groups, respectively. L-Thy, levothyroxine; SO2, sulfur dioxide; HDX, hydrogen deuterium exchange.


Reference

1. De Leo S, Lee SY, Braverman LE. 2016; Hyperthyroidism. Lancet. 388:906–918. DOI: 10.1016/S0140-6736(16)00278-6. PMID: 27038492.
Article
2. Garmendia Madariaga A, Santos Palacios S, Guillén-Grima F, Galofré JC. 2014; The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J Clin Endocrinol Metab. 99:923–931. DOI: 10.1210/jc.2013-2409. PMID: 24423323.
Article
3. Osuna PM, Udovcic M, Sharma MD. 2017; Hyperthyroidism and the heart. Methodist Debakey Cardiovasc J. 13:60–63. DOI: 10.14797/mdcj-13-2-60. PMID: 28740583. PMCID: PMC5512680.
4. Danzi S, Klein I. 2014; Thyroid disease and the cardiovascular system. Endocrinol Metab Clin North Am. 43:517–528. DOI: 10.1016/j.ecl.2014.02.005. PMID: 24891175.
Article
5. Razvi S, Jabbar A, Pingitore A, Danzi S, Biondi B, Klein I, Peeters R, Zaman A, Iervasi G. 2018; Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 71:1781–1796. DOI: 10.1016/j.jacc.2018.02.045. PMID: 29673469.
Article
6. Bektur Aykanat NE, Şahin E, Kaçar S, Bağcı R, Karakaya Ş, Burukoğlu Dönmez D, Şahintürk V. 2021; Cardiac hypertrophy caused by hyperthyroidism in rats: the role of ATF-6 and TRPC1 channels. Can J Physiol Pharmacol. 99:1226–1233. DOI: 10.1139/cjpp-2021-0260. PMID: 34283935.
Article
7. Wang YY, Jiao B, Guo WG, Che HL, Yu ZB. 2010; Excessive thyroxine enhances susceptibility to apoptosis and decreases contractility of cardiomyocytes. Mol Cell Endocrinol. 320:67–75. DOI: 10.1016/j.mce.2010.01.031. PMID: 20122986.
8. Klein I, Ojamaa K. 2001; Thyroid hormone and the cardiovascular system. N Engl J Med. 344:501–509. DOI: 10.1056/NEJM200102153440707. PMID: 11172193.
9. Freitas F, Estato V, Carvalho VF, Torres RC, Lessa MA, Tibiriçá E. 2013; Cardiac microvascular rarefaction in hyperthyroidism-induced left ventricle dysfunction. Microcirculation. 20:590–598. DOI: 10.1111/micc.12057. PMID: 23510303.
Article
10. Woeber KA. 1992; Thyrotoxicosis and the heart. N Engl J Med. 327:94–98. DOI: 10.1056/NEJM199207093270206. PMID: 1603141.
11. Yue WS, Chong BH, Zhang XH, Liao SY, Jim MH, Kung AW, Tse HF, Siu CW. 2011; Hyperthyroidism-induced left ventricular diastolic dysfunction: implication in hyperthyroidism-related heart failure. Clin Endocrinol (Oxf). 74:636–643. DOI: 10.1111/j.1365-2265.2011.03981.x. PMID: 21470287.
12. Wang YY, Morimoto S, Du CK, Lu QW, Zhan DY, Tsutsumi T, Ide T, Miwa Y, Takahashi-Yanaga F, Sasaguri T. 2010; Up-regulation of type 2 iodothyronine deiodinase in dilated cardiomyopathy. Cardiovasc Res. 87:636–646. DOI: 10.1093/cvr/cvq133. PMID: 20453157.
13. Elmore S. 2007; Apoptosis: a review of programmed cell death. Toxicol Pathol. 35:495–516. DOI: 10.1080/01926230701320337. PMID: 17562483. PMCID: PMC2117903.
14. Kumar A, Sinha RA, Tiwari M, Singh R, Koji T, Manhas N, Rastogi L, Pal L, Shrivastava A, Sahu RP, Godbole MM. 2007; Hyperthyroidism induces apoptosis in rat liver through activation of death receptor-mediated pathways. J Hepatol. 46:888–898. DOI: 10.1016/j.jhep.2006.12.015. PMID: 17321637.
15. Hu H, Tian M, Ding C, Yu S. 2019; The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 9:3083. DOI: 10.3389/fimmu.2018.03083. PMID: 30662442. PMCID: PMC6328441.
16. Groenendyk J, Agellon LB, Michalak M. 2013; Coping with endoplasmic reticulum stress in the cardiovascular system. Annu Rev Physiol. 75:49–67. DOI: 10.1146/annurev-physiol-030212-183707. PMID: 23020580.
17. Li Y, Guo Y, Tang J, Jiang J, Chen Z. 2015; New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai). 47:146–147. Erratum for: Acta Biochim Biophys Sin (Shanghai). 2014;46:629-640. DOI: 10.1093/abbs/gmu048. PMID: 25016584.
18. Zhang J, Guo J, Yang N, Huang Y, Hu T, Rao C. 2022; Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis. 13:1051. DOI: 10.1038/s41419-022-05444-x. PMID: 36535923. PMCID: PMC9763476.
19. He L, Yuan L, Yu W, Sun Y, Jiang D, Wang X, Feng X, Wang Z, Xu J, Yang R, Zhang W, Feng H, Chen HZ, Zeng YA, Hui L, Wu Q, Zhang Y, Zhang L. 2020; A regulation loop between YAP and NR4A1 balances cell proliferation and apoptosis. Cell Rep. 33:108284. DOI: 10.1016/j.celrep.2020.108284. PMID: 33086070.
20. Zhang J, Liu J, Gao S, Lin W, Gao P, Gao K, Zhang Y, Du K, Yang X, Wang W, Zhu R, Wang Y. 2019; Antiapoptosis and antifibrosis effects of Qishen granules on heart failure rats via Hippo pathway. Biomed Res Int. 2019:1642575. Erratum in: Biomed Res Int. 2020;2020: 8569251. DOI: 10.1155/2019/1642575. PMID: 31915683. PMCID: PMC6930732.
21. Wu H, Wei L, Fan F, Ji S, Zhang S, Geng J, Hong L, Fan X, Chen Q, Tian J, Jiang M, Sun X, Jin C, Yin ZY, Liu Q, Zhang J, Qin F, Lin KH, Yu JS, Deng X, et al. 2015; Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat Commun. 6:6239. DOI: 10.1038/ncomms7239. PMID: 25695629.
22. Ashokkumar R, Jamuna S, Sakeena Sadullah MS, Niranjali Devaraj S. 2018; Vitexin protects isoproterenol induced post myocardial injury by modulating hipposignaling and ER stress responses. Biochem Biophys Res Commun. 496:731–737. DOI: 10.1016/j.bbrc.2018.01.104. PMID: 29406244.
23. Ouyang H, Zhong J, Lu J, Zhong Y, Hu Y, Tan Y. 2019; Inhibitory effect of melatonin on Mst1 ameliorates myocarditis through attenuating ER stress and mitochondrial dysfunction. J Mol Histol. 50:405–415. DOI: 10.1007/s10735-019-09836-w. PMID: 31256303.
24. Huang Y, Tang C, Du J, Jin H. 2016; Endogenous sulfur dioxide: a new member of gasotransmitter family in the cardiovascular system. Oxid Med Cell Longev. 2016:8961951. DOI: 10.1155/2016/8961951. PMID: 26839635. PMCID: PMC4709694.
25. Wang XB, Cui H, Du JB. 2019; Potential therapeutic effect of SO₂ on fibrosis. Histol Histopathol. 34:1289–1297.
26. Hwang JH, Kang SY, Kang AN, Jung HW, Jung C, Jeong JH, Park YK. 2017; MOK, a pharmacopuncture medicine, regulates thyroid dysfunction in L-thyroxin-induced hyperthyroidism in rats through the regulation of oxidation and the TRPV1 ion channel. BMC Complement Altern Med. 17:535. DOI: 10.1186/s12906-017-2036-1. PMID: 29246135. PMCID: PMC5732465.
27. Yu W, Liu D, Liang C, Ochs T, Chen S, Chen S, Du S, Tang C, Huang Y, Du J, Jin H. 2016; Sulfur dioxide protects against collagen accumulation in pulmonary artery in association with downregulation of the transforming growth factor β1/Smad pathway in pulmonary hypertensive rats. J Am Heart Assoc. 5:e003910. DOI: 10.1161/JAHA.116.003910. PMID: 27792648. PMCID: PMC5121494.
28. Liu M, Liu S, Tan W, Tang F, Long J, Li Z, Liang B, Chu C, Yang J. 2017; Gaseous signalling molecule SO2 via HippoMST pathway to improve myocardial fibrosis of diabetic rats. Mol Med Rep. 16:8953–8963. DOI: 10.3892/mmr.2017.7714. PMID: 28990064. PMCID: PMC5779980.
Article
29. Bao M, Hua X, Mo H, Sun Z, Xu B, Chen X, Xu M, Xu X, Song J. 2022; N-acetylcysteine, an ROS inhibitor, alleviates the pathophysiology of hyperthyroidism-induced cardiomyopathy via the ROS/Ca2+ pathway. Biomolecules. 12:1195. DOI: 10.3390/biom12091195. PMID: 36139036. PMCID: PMC9496499.
30. Lv B, Peng H, Qiu B, Zhang L, Ge M, Bu D, Li K, Yu X, Du J, Yang L, Tang C, Huang Y, Du J, Jin H. 2022; Sulphenylation of CypD at cysteine 104: a novel mechanism by which SO2 inhibits cardiomyocyte apoptosis. Front Cell Dev Biol. 9:784799. DOI: 10.3389/fcell.2021.784799. PMID: 35118072. PMCID: PMC8805922.
31. Zhang D, Wang X, Tian X, Zhang L, Yang G, Tao Y, Liang C, Li K, Yu X, Tang X, Tang C, Zhou J, Kong W, Du J, Huang Y, Jin H. 2018; The increased endogenous sulfur dioxide acts as a compensatory mechanism for the downregulated endogenous hydrogen sulfide pathway in the endothelial cell inflammation. Front Immunol. 9:882. DOI: 10.3389/fimmu.2018.00882. PMID: 29760703. PMCID: PMC5936987.
32. Grais IM, Sowers JR. 2014; Thyroid and the heart. Am J Med. 127:691–698. DOI: 10.1016/j.amjmed.2014.03.009. PMID: 24662620. PMCID: PMC4318631.
33. Fadel BM, Ellahham S, Ringel MD, Lindsay J Jr, Wartofsky L, Burman KD. 2000; Hyperthyroid heart disease. Clin Cardiol. 23:402–408. DOI: 10.1002/clc.4960230605. PMID: 10875028. PMCID: PMC6654928.
Article
34. Khamis T, Alsemeh AE, Abdullah DM. 2022; Sacubitril/valsartan (LCZ696) ameliorates hyperthyroid-induced cardiac hypertrophy in male rats through modulation of miR-377, let-7 b, autophagy, and fibrotic signaling pathways. Sci Rep. 12:14654. DOI: 10.1038/s41598-022-18860-y. PMID: 36030321. PMCID: PMC9420135.
Article
35. Kong P, Christia P, Frangogiannis NG. 2014; The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 71:549–574. DOI: 10.1007/s00018-013-1349-6. PMID: 23649149. PMCID: PMC3769482.
36. Frangogiannis NG. 2021; Cardiac fibrosis. Cardiovasc Res. 117:1450–1488. DOI: 10.1093/cvr/cvaa324. PMID: 33135058. PMCID: PMC8152700.
37. Goldblatt ZE, Cirka HA, Billiar KL. 2021; Mechanical regulation of apoptosis in the cardiovascular system. Ann Biomed Eng. 49:75–97. DOI: 10.1007/s10439-020-02659-x. PMID: 33169343. PMCID: PMC7775273.
Article
38. Li YY, McTiernan CF, Feldman AM. 2000; Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res. 46:214–224. DOI: 10.1016/S0008-6363(00)00003-1. PMID: 10773225.
39. Foster CR, Daniel LL, Daniels CR, Dalal S, Singh M, Singh K. 2013; Deficiency of ataxia telangiectasia mutated kinase modulates cardiac remodeling following myocardial infarction: involvement in fibrosis and apoptosis. PLoS One. 8:e83513. DOI: 10.1371/journal.pone.0083513. PMID: 24358288. PMCID: PMC3865210.
Article
40. Jiang M, Qi L, Li L, Li Y. 2020; The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov. 6:112. DOI: 10.1038/s41420-020-00349-0. PMID: 33133646. PMCID: PMC7595122.
Article
41. Boudreau MW, Peh J, Hergenrother PJ. 2019; Procaspase-3 overexpression in cancer: a paradoxical observation with therapeutic potential. ACS Chem Biol. 14:2335–2348. DOI: 10.1021/acschembio.9b00338. PMID: 31260254. PMCID: PMC6858495.
42. Czabotar PE, Lessene G, Strasser A, Adams JM. 2014; Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. DOI: 10.1038/nrm3722. PMID: 24355989.
Article
43. Teixeira RB, Barboza TE, DE Araujo CC, Siqueira R, DE Castro AL, Bonetto JHP, DE Lima-Seolin BG, Carraro CC, Bello-Klein A, Singal PK, Araujo ASDR. 2018; Decreased PGC1-α levels and increased apoptotic protein signaling are associated with the maladaptive cardiac hypertrophy in hyperthyroidism. J Biosci. 43:887–895. DOI: 10.1007/s12038-018-9816-8. PMID: 30541949.
44. Liu MQ, Chen Z, Chen LX. 2016; Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin. 37:425–443. DOI: 10.1038/aps.2015.145. PMID: 26838072. PMCID: PMC4820795.
Article
45. Bravo R, Gutierrez T, Paredes F, Gatica D, Rodriguez AE, Pedrozo Z, Chiong M, Parra V, Quest AF, Rothermel BA, Lavandero S. 2012; Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int J Biochem Cell Biol. 44:16–20. DOI: 10.1016/j.biocel.2011.10.012. PMID: 22064245. PMCID: PMC4118286.
Article
46. Shi Y, Wang S, Peng H, Lv Y, Li W, Cheng S, Liu J. 2019; Fibroblast growth factor 21 attenuates vascular calcification by alleviating endoplasmic reticulum stress mediated apoptosis in rats. Int J Biol Sci. 15:138–147. DOI: 10.7150/ijbs.28873. PMID: 30662354. PMCID: PMC6329919.
Article
47. Lenna S, Trojanowska M. 2012; The role of endoplasmic reticulum stress and the unfolded protein response in fibrosis. Curr Opin Rheumatol. 24:663–668. DOI: 10.1097/BOR.0b013e3283588dbb. PMID: 22918530. PMCID: PMC3828639.
Article
48. Luo T, Kim JK, Chen B, Abdel-Latif A, Kitakaze M, Yan L. 2015; Attenuation of ER stress prevents post-infarction-induced cardiac rupture and remodeling by modulating both cardiac apoptosis and fibrosis. Chem Biol Interact. 225:90–98. DOI: 10.1016/j.cbi.2014.10.032. PMID: 25450231. PMCID: PMC4684183.
49. Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T. 2004; Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cell Biol. 24:8007–8017. DOI: 10.1128/MCB.24.18.8007-8017.2004. PMID: 15340063. PMCID: PMC515036.
50. Meng S, Zhang W, Guan LJ, Muhali FS, Zhou JZ, Song RH, Xu J, Zhang JA. 2017; Proteomic analysis reveals aberrant expression of CALR and HSPA5 in thyroid tissues of Graves' disease. Clin Biochem. 50:40–45. DOI: 10.1016/j.clinbiochem.2016.08.014. PMID: 27566407.
Article
51. Zhou Q, Li L, Zhao B, Guan KL. 2015; The hippo pathway in heart development, regeneration, and diseases. Circ Res. 116:1431–1447. DOI: 10.1161/CIRCRESAHA.116.303311. PMID: 25858067. PMCID: PMC4394208.
Article
52. Ma S, Meng Z, Chen R, Guan KL. 2019; The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 88:577–604. DOI: 10.1146/annurev-biochem-013118-111829. PMID: 30566373.
53. Deshpande A, Borlepawar A, Rosskopf A, Frank D, Frey N, Rangrez AY. 2021; SH3-binding glutamic acid rich-deficiency augments apoptosis in neonatal rat cardiomyocytes. Int J Mol Sci. 22:11042. DOI: 10.3390/ijms222011042. PMID: 34681711. PMCID: PMC8541172.
54. Francisco J, Zhang Y, Jeong JI, Mizushima W, Ikeda S, Ivessa A, Oka S, Zhai P, Tallquist MD, Del Re DP. 2020; Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic Transl Sci. 5:931–945. Erratum in: JACC Basic Transl Sci. 2021;6:629. DOI: 10.1016/j.jacbts.2020.07.009. PMID: 33015415. PMCID: PMC7524792.
55. Zhang M, Zhang L, Hu J, Lin J, Wang T, Duan Y, Man W, Feng J, Sun L, Jia H, Li C, Zhang R, Wang H, Sun D. 2016; MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia. 59:2435–2447. DOI: 10.1007/s00125-016-4070-9. PMID: 27510910.
56. Su D, Li Y, Guan L, Li Q, Shi C, Ma X, Song Y. 2021; Elevated MST1 leads to apoptosis via depletion of YAP1 in cardiomyocytes exposed to high glucose. Mol Med. 27:13. DOI: 10.1186/s10020-021-00267-6. PMID: 33568044. PMCID: PMC7874454.
Article
57. Huang Y, Zhang H, Lv B, Tang C, Du J, Jin H. 2022; Sulfur dioxide: endogenous generation, biological effects, detection, and therapeutic potential. Antioxid Redox Signal. 36:256–274. DOI: 10.1089/ars.2021.0213. PMID: 34538110.
58. Liu J, Huang Y, Chen S, Tang C, Jin H, Du J. 2016; Role of endogenous sulfur dioxide in regulating vascular structural remodeling in hypertension. Oxid Med Cell Longev. 2016:4529060. DOI: 10.1155/2016/4529060. PMID: 27721913. PMCID: PMC5046050.
59. Jin H, Liu AD, Holmberg L, Zhao M, Chen S, Yang J, Sun Y, Chen S, Tang C, Du J. 2013; The role of sulfur dioxide in the regulation of mitochondrion-related cardiomyocyte apoptosis in rats with isopropylarterenol-induced myocardial injury. Int J Mol Sci. 14:10465–10482. DOI: 10.3390/ijms140510465. PMID: 23698774. PMCID: PMC3676849.
60. Zhao J, Wu Q, Yang T, Nie L, Liu S, Zhou J, Chen J, Jiang Z, Xiao T, Yang J, Chu C. 2022; Gaseous signal molecule SO2 regulates autophagy through PI3K/AKT pathway inhibits cardiomyocyte apoptosis and improves myocardial fibrosis in rats with type II diabetes. Korean J Physiol Pharmacol. 26:541–556. DOI: 10.4196/kjpp.2022.26.6.541. PMID: 36302628. PMCID: PMC9614393.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr