Ewha Med J.  2024 Jan;47(1):e4. 10.12771/emj.2024.e4.

Overview of endocrine tumor syndromes manifesting as adrenal tumors

Affiliations
  • 1Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Abstract

Endocrine tumor syndromes constitute a group of disorders characterized by tumors in hormoneproducing tissues. These conditions predominantly affect younger patients and often have a familial inheritance. Advances in molecular genetics in recent decades have facilitated the identification of several genes associated with these tumors. The recent World Health Organization classification of adrenocortical tumors integrates the latest developments in pathology, oncology, and molecular biology. In addition, this updated classification includes adrenal cortical diseases based on an understanding of germline susceptibility to these conditions and their clonal-neoplastic nature. Catecholamine-secreting tumors, including pheochromocytoma and paraganglioma, have been found to have a genetic predisposition in as many as 80% of cases. Compared to sporadic cases, endocrine tumor syndromes are more likely to present bilaterally and show synchronous or metachronous disease. This highlights the critical need for early diagnosis, intervention, and ongoing surveillance. This review focuses on the clinical manifestations and genetic basis of endocrine tumor syndromes originating from the adrenal glands.

Keyword

Endocrine gland neoplasms; Adrenal gland neoplasms; Hereditary neoplastic syndromes; Pheochromocytoma; Paraganglioma

Cited by  1 articles

Gender equity in medical journals in Korea and this issue
Sun Huh
Ewha Med J. 2024;47(1):e1.    doi: 10.12771/emj.2024.e1.


Reference

References

1. Lam AK. Update on adrenal tumours in 2017 World Health Organization (WHO) of endocrine tumours. Endocr Pathol. 2017; 28(3):213–227. DOI: 10.1007/s12022-017-9484-5. PMID: 28477311.
Article
2. Mansmann G, Lau J, Balk E, Rothberg M, Miyachi Y, Bornstein SR. The clinically inapparent adrenal mass: update in diagnosis and management. Endocr Rev. 2004; 25(2):309–340. DOI: 10.1210/er.2002-0031. PMID: 15082524.
Article
3. McAteer JP, Huaco JA, Gow KW. Predictors of survival in pediatric adrenocortical carcinoma: a Surveillance, Epidemiology, and End Results (SEER) program study. J Pediatr Surg. 2013; 48(5):1025–1031. DOI: 10.1016/j.jpedsurg.2013.02.017. PMID: 23701777.
Article
4. Sandru F, Petca RC, Carsote M, Petca A, Dumitrascu MC, Ghemigian A. Adrenocortical carcinoma: pediatric aspects (review). Exp Ther Med. 2022; 23(4):287. DOI: 10.3892/etm.2022.11216. PMID: 35317446. PMCID: PMC8908472.
Article
5. Heo YJ, Yoo JH, Choe YS, Park SH, Lee SB, Kim HA, et al. Low-dose mitotane-induced neurological and endocrinological complication in a 5-year-old girl with adrenocortical carcinoma. Ann Pediatr Endocrinol Metab. 2022; 27(3):236–241. DOI: 10.6065/apem.2142044.022. PMID: 34670067. PMCID: PMC9537676.
Article
6. Markosyan R. Patients with disorders of sex development. Ann Pediatr Endocrinol Metab. 2021; 26(2):74–79. DOI: 10.6065/apem.2040240.120. PMID: 34218628. PMCID: PMC8255866.
Article
7. Lee HG, Kim CJ. Classic and backdoor pathways of androgen biosynthesis in human sexual development. Ann Pediatr Endocrinol Metab. 2022; 27(2):83–89. DOI: 10.6065/apem.2244124.062. PMID: 35793998. PMCID: PMC9260366.
Article
8. Ebbehoj A, Li D, Kaur RJ, Zhang C, Singh S, Li T, et al. Epidemiology of adrenal tumours in Olmsted County, Minnesota, USA: a population-based cohort study. Lancet Diabetes Endocrinol. 2020; 8(11):894–902. DOI: 10.1016/S2213-8587(20)30314-4. PMID: 33065059.
Article
9. Pinto EM, Zambetti GP, Rodriguez-Galindo C. Pediatric adrenocortical tumours. Best Pract Res Clin Endocrinol Metab. 2020; 34(3):101448. DOI: 10.1016/j.beem.2020.101448. PMID: 32636100.
Article
10. Else T. Association of adrenocortical carcinoma with familial cancer susceptibility syndromes. Mol Cell Endocrinol. 2012; 351(1):66–70. DOI: 10.1016/j.mce.2011.12.008. PMID: 22209747. PMCID: PMC3307589.
Article
11. Yoo HW. Diverse etiologies, diagnostic approach, and management of primary adrenal insufficiency in pediatric age. Ann Pediatr Endocrinol Metab. 2021; 26(3):149–157. DOI: 10.6065/apem.2142150.075. PMID: 34610702. PMCID: PMC8505038.
Article
12. Kim JH, Choi Y, Hwang S, Yoon JH, Kim GH, Yoo HW, et al. Clinical characteristics and long-term outcomes of adrenal tumors in children and adolescents. Exp Clin Endocrinol Diabetes. 2023; 131(10):515–522. DOI: 10.1055/a-2127-9292. PMID: 37437600.
Article
13. Mai PL, Best AF, Peters JA, DeCastro RM, Khincha PP, Loud JT, et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. 2016; 122(23):3673–3681. DOI: 10.1002/cncr.30248. PMID: 27496084. PMCID: PMC5115949.
Article
14. Kumamoto T, Yamazaki F, Nakano Y, Tamura C, Tashiro S, Hattori H, et al. Medical guidelines for Li–Fraumeni syndrome 2019, version 1.1. Int J Clin Oncol. 2021; 26(12):2161–2178. DOI: 10.1007/s10147-021-02011-w. PMID: 34633580. PMCID: PMC8595164.
Article
15. Wasserman JD, Novokmet A, Eichler-Jonsson C, Ribeiro RC, Rodriguez-Galindo C, Zambetti GP, et al. Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: a children's oncology group study. J Clin Oncol. 2015; 33(6):602–609. DOI: 10.1200/JCO.2013.52.6863. PMID: 25584008. PMCID: PMC4517369.
Article
16. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015; 373(24):2336–2346. DOI: 10.1056/NEJMoa1508054. PMID: 26580448. PMCID: PMC4734119.
Article
17. Amadou A, Waddington Achatz MI, Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li–Fraumeni syndrome. Curr Opin Oncol. 2018; 30(1):23–29. DOI: 10.1097/CCO.0000000000000423. PMID: 29076966.
Article
18. Michalkiewicz E, Sandrini R, Figueiredo B, Miranda ECM, Caran E, Oliveira-Filho AG, et al. Clinical and outcome characteristics of children with adrenocortical tumors: a report from the international pediatric adrenocortical tumor registry. J Clin Oncol. 2004; 22(5):838–845. DOI: 10.1200/JCO.2004.08.085. PMID: 14990639.
Article
19. Fassnacht M, Dekkers OM, Else T, Baudin E, Berruti A, De Krijger RR, et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol. 2018; 179(4):G1–G46. DOI: 10.1530/EJE-18-0608. PMID: 30299884.
Article
20. Pinto EM, Chen X, Easton J, Finkelstein D, Liu Z, Pounds S, et al. Genomic landscape of paediatric adrenocortical tumours. Nat Commun. 2015; 6:6302. DOI: 10.1038/ncomms7302. PMID: 25743702. PMCID: PMC4352712.
Article
21. Coulter CL. Fetal adrenal development: insight gained from adrenal tumors. Trends Endocrinol Metab. 2005; 16(5):235–242. DOI: 10.1016/j.tem.2005.05.010. PMID: 15949953.
Article
22. Lapunzina P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am J Med Genet C Semin Med Genet. 2005; 137C(1):53–71. DOI: 10.1002/ajmg.c.30064. PMID: 16010678.
Article
23. MacFarland SP, Mostoufi-Moab S, Zelley K, Mattei PA, States LJ, Bhatti TR, et al. Management of adrenal masses in patients with Beckwith–Wiedemann syndrome. Pediatr Blood Cancer. 2017; 64(8):e26432. DOI: 10.1002/pbc.26432. PMID: 28066990. PMCID: PMC5944603.
Article
24. Eltan M, Arslan Ates E, Cerit K, Menevse TS, Kaygusuz SB, Eker N, et al. Adrenocortical carcinoma in atypical Beckwith-Wiedemann syndrome due to loss of methylation at imprinting control region 2. Pediatr Blood Cancer. 2020; 67(1):e28042. DOI: 10.1002/pbc.28042. PMID: 31612591.
Article
25. Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, et al. Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018; 14(4):229–249. DOI: 10.1038/nrendo.2017.166. PMID: 29377879. PMCID: PMC6022848.
Article
26. Kamilaris CDC, Stratakis CA. Multiple endocrine neoplasia type 1 (MEN1): an update and the significance of early genetic and clinical diagnosis. Front Endocrinol. 2019; 10:339. DOI: 10.3389/fendo.2019.00339. PMID: 31263451. PMCID: PMC6584804.
Article
27. Gatta-Cherifi B, Chabre O, Murat A, Niccoli P, Cardot-Bauters C, Rohmer V, et al. Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d'etude des Tumeurs Endocrines database. Eur J Endocrinol. 2012; 166(2):269–279. DOI: 10.1530/EJE-11-0679. PMID: 22084155.
Article
28. Kim SE, Lee NY, Cho WK, Yim J, Lee JW, Kim M, et al. Adrenocortical carcinoma and a sporadic MEN1 mutation in a 3-year-old girl: a case report. Ann Pediatr Endocrinol Metab. 2022; 27(4):315–319. DOI: 10.6065/apem.2142100.050. PMID: 35038837. PMCID: PMC9816470.
Article
29. Pieterman CRC, Valk GD. Update on the clinical management of multiple endocrine neoplasia type 1. Clin Endocrinol. 2022; 97(4):409–423. DOI: 10.1111/cen.14727. PMID: 35319130. PMCID: PMC9540817.
Article
30. Newey PJ, Newell-Price J. MEN1 surveillance guidelines: time to (re)think? J Endocr Soc. 2022; 6(2):bvac001. DOI: 10.1210/jendso/bvac001. PMID: 35079671. PMCID: PMC8783614.
Article
31. Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab. 2009; 94(5):1826–1834. DOI: 10.1210/jc.2008-2083. PMID: 19141585. PMCID: PMC2684477.
Article
32. Tonelli F, Giudici F, Giusti F, Marini F, Cianferotti L, Nesi G, et al. A heterozygous frameshift mutation in exon 1 of CDKN1B gene in a patient affected by MEN4 syndrome. Eur J Endocrinol. 2014; 171(2):K7–K17. DOI: 10.1530/EJE-14-0080. PMID: 24819502.
Article
33. Mete O, Erickson LA, Juhlin CC, De Krijger RR, Sasano H, Volante M, et al. Overview of the 2022 WHO classification of adrenal cortical tumors. Endocr Pathol. 2022; 33(1):155–196. DOI: 10.1007/s12022-022-09710-8. PMID: 35288842. PMCID: PMC8920443.
Article
34. de Joussineau C, Sahut-Barnola I, Levy I, Saloustros E, Val P, Stratakis CA, et al. The cAMP pathway and the control of adrenocortical development and growth. Mol Cell Endocrinol. 2012; 351(1):28–36. DOI: 10.1016/j.mce.2011.10.006. PMID: 22019902. PMCID: PMC3678347.
Article
35. Assié G, Libé R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome. N Engl J Med. 2013; 369(22):2105–2114. DOI: 10.1056/NEJMoa1304603. PMID: 24283224. PMCID: PMC4727443.
Article
36. Elbelt U, Trovato A, Kloth M, Gentz E, Finke R, Spranger J, et al. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma. J Clin Endocrinol Metab. 2015; 100(1):E119–E128. DOI: 10.1210/jc.2014-2648. PMID: 25279498. PMCID: PMC4283009.
37. Vassiliadi DA, Tsagarakis S. Diagnosis and management of primary bilateral macronodular adrenal hyperplasia. Endocr Relat Cancer. 2019; 26(10):R567–R581. DOI: 10.1530/ERC-19-0240. PMID: 32053747.
Article
38. Berthon AS, Szarek E, Stratakis CA. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors. Front Cell Dev Biol. 2015; 3:26. DOI: 10.3389/fcell.2015.00026. PMID: 26042218. PMCID: PMC4438593.
Article
39. Lodish MB, Yuan B, Levy I, Braunstein GD, Lyssikatos C, Salpea P, et al. Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect: molecular mechanisms and clinical presentations. Eur J Endocrinol. 2015; 172(6):803–811. DOI: 10.1530/EJE-14-1154. PMID: 25924874. PMCID: PMC4428149.
Article
40. Horvath A, Boikos S, Giatzakis C, Robinson-White A, Groussin L, Griffin KJ, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet. 2006; 38(7):794–800. DOI: 10.1038/ng1809. PMID: 16767104.
41. Horvath A, Mericq V, Stratakis CA. Mutation in PDE8B, a cyclic AMP–specific phosphodiesterase in adrenal hyperplasia. N Engl J Med. 2008; 358(7):750–752. DOI: 10.1056/NEJMc0706182. PMID: 18272904.
42. Concepción-Zavaleta MJ, Armas CD, Quiroz-Aldave JE, García-Villasante EJ, Gariza-Solano AC, Durand-Vásquez MC, et al. Cushing disease in pediatrics: an update. Ann Pediatr Endocrinol Metab. 2023; 28(2):87–97. DOI: 10.6065/apem.2346074.037. PMID: 37401055. PMCID: PMC10329946.
43. Bholah R, Bunchman TE. Review of pediatric pheochromocytoma and paraganglioma. Front Pediatr. 2017; 5:155. DOI: 10.3389/fped.2017.00155. PMID: 28752085. PMCID: PMC5508015.
44. Bausch B, Wellner U, Bausch D, Schiavi F, Barontini M, Sanso G, et al. Long-term prognosis of patients with pediatric pheochromocytoma. Endocr Relat Cancer. 2014; 21(1):17–25. DOI: 10.1530/ERC-13-0415. PMID: 24169644.
Article
45. Park H, Kim MS, Lee J, Kim JH, Jeong BC, Lee S, et al. Clinical presentation and treatment outcomes of children and adolescents with pheochromocytoma and paraganglioma in a single center in Korea. Front Endocrinol. 2021; 11:610746. DOI: 10.3389/fendo.2020.610746. PMID: 33584544. PMCID: PMC7879705.
Article
46. Beltsevich DG, Kuznetsov NS, Kazaryan AM, Lysenko MA. Pheochromocytoma surgery: epidemiologic peculiarities in children. World J Surg. 2004; 28(6):592–596. DOI: 10.1007/s00268-004-7134-9. PMID: 15366751.
Article
47. Pham TH, Moir C, Thompson GB, Zarroug AE, Hamner CE, Farley D, et al. Pheochromocytoma and paraganglioma in children: a review of medical and surgical management at a tertiary care center. Pediatrics. 2006; 118(3):1109–1117. DOI: 10.1542/peds.2005-2299. PMID: 16951005.
Article
48. Fishbein L, Merrill S, Fraker DL, Cohen DL, Nathanson KL. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol. 2013; 20(5):1444–1450. DOI: 10.1245/s10434-013-2942-5. PMID: 23512077. PMCID: PMC4291281.
Article
49. Lenders JWM, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SKG, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014; 99(6):1915–1942. DOI: 10.1210/jc.2014-1498. PMID: 24893135.
Article
50. Aufforth RD, Ramakant P, Sadowski SM, Mehta A, Trebska-McGowan K, Nilubol N, et al. Pheochromocytoma screening initiation and frequency in von Hippel-Lindau syndrome. J Clin Endocrinol Metab. 2015; 100(12):4498–4504. DOI: 10.1210/jc.2015-3045. PMID: 26451910. PMCID: PMC4667160.
Article
51. Castro-Teles J, Sousa-Pinto B, Rebelo S, Pignatelli D. Pheochromocytomas and paragangliomas in von Hippel–Lindau disease: not a needle in a haystack. Endocr Connect. 2021; 10(11):R293–R304. DOI: 10.1530/EC-21-0294. PMID: 34596579. PMCID: PMC8630766.
Article
52. Dahia PLM, Clifton-Bligh R, Gimenez-Roqueplo AP, Robledo M, Jimenez C. Hereditary endocrine tumours: current state-of-the-art and research opportunities: metastatic pheochromocytomas and paragangliomas: proceedings of the MEN2019 workshop. Endocr Relat Cancer. 2020; 27(8):T41–T52. DOI: 10.1530/ERC-19-0435. PMID: 32069214. PMCID: PMC7334096.
Article
53. Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015; 25(6):567–610. DOI: 10.1089/thy.2014.0335. PMID: 25810047. PMCID: PMC4490627.
Article
54. Varshney N, Kebede AA, Owusu-Dapaah H, Lather J, Kaushik M, Bhullar JS. A review of von Hippel-Lindau syndrome. J Kidney Cancer VHL. 2017; 4(3):20–29. DOI: 10.15586/jkcvhl.2017.88. PMID: 28785532. PMCID: PMC5541202.
Article
55. Ong KR, Woodward ER, Killick P, Lim C, Macdonald F, Maher ER. Genotype–phenotype correlations in von Hippel-Lindau disease. Hum Mutat. 2007; 28(2):143–149. DOI: 10.1002/humu.20385. PMID: 17024664.
Article
56. Binderup MLM, Smerdel M, Borgwadt L, Beck Nielsen SS, Madsen MG, Møller HU, et al. von Hippel-Lindau disease: updated guideline for diagnosis and surveillance. Eur J Med Genet. 2022; 65(8):104538. DOI: 10.1016/j.ejmg.2022.104538. PMID: 35709961.
57. Imai T, Uchino S, Okamoto T, Suzuki S, Kosugi S, Kikumori T, et al. High penetrance of pheochromocytoma in multiple endocrine neoplasia 2 caused by germ line RET codon 634 mutation in Japanese patients. Eur J Endocrinol. 2013; 168(5):683–687. DOI: 10.1530/EJE-12-1106. PMID: 23416954.
Article
58. Lairmore TC, Ball DW, Baylin SB, Wells SA Jr. Management of pheochromocytomas in patients with multiple endocrine neoplasia type 2 syndromes. Ann Surg. 1993; 217(6):595–601. DOI: 10.1097/00000658-199306000-00001. PMID: 8099474. PMCID: PMC1242859.
Article
59. Asari R, Scheuba C, Kaczirek K, Niederle B. Estimated risk of pheochromocytoma recurrence after adrenal-sparing surgery in patients with multiple endocrine neoplasia type 2A. Arch Surg. 2006; 141(12):1199–1205. DOI: 10.1001/archsurg.141.12.1199. PMID: 17178962.
Article
60. Castinetti F, Waguespack SG, Machens A, Uchino S, Hasse-Lazar K, Sanso G, et al. Natural history, treatment, and long-term follow up of patients with multiple endocrine neoplasia type 2B: an international, multicentre, retrospective study. Lancet Diabetes Endocrinol. 2019; 7(3):213–220. DOI: 10.1016/S2213-8587(18)30336-X. PMID: 30660595.
Article
61. Thosani S, Ayala-Ramirez M, Palmer L, Hu MI, Rich T, Gagel RF, et al. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 2013; 98(11):E1813–E1819. DOI: 10.1210/jc.2013-1653. PMID: 24030942. PMCID: PMC5399523.
Article
62. Carton C, Evans DG, Blanco I, Friedrich RE, Ferner RE, Farschtschi S, et al. ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. eClinicalMedicine. 2023; 56:101818. DOI: 10.1016/j.eclinm.2022.101818. PMID: 36684394. PMCID: PMC9845795.
Article
63. Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin structure, functions and regulation. Cells. 2020; 9(11):2365. DOI: 10.3390/cells9112365. PMID: 33121128. PMCID: PMC7692384.
Article
64. Gruber LM, Erickson D, Babovic-Vuksanovic D, Thompson GB, Young WF Jr, Bancos I. Pheochromocytoma and paraganglioma in patients with neurofibromatosis type 1. Clin Endocrinol. 2017; 86(1):141–149. DOI: 10.1111/cen.13163. PMID: 27460956.
Article
65. Zinnamosca L, Petramala L, Cotesta D, Marinelli C, Schina M, Cianci R, et al. Neurofibromatosis type 1 (NF1) and pheochromocytoma: prevalence, clinical and cardiovascular aspects. Arch Dermatol Res. 2011; 303(5):317–325. DOI: 10.1007/s00403-010-1090-z. PMID: 21042801.
Article
66. Al-Sharefi A, Javaid U, Perros P, Ealing J, Truran P, Nag S, et al. Clinical presentation and outcomes of phaeochromocytomas/paragangliomas in neurofibromatosis type 1. Eur Endocrinol. 2019; 15(2):95–100. DOI: 10.17925/EE.2019.15.2.95. PMID: 31616500. PMCID: PMC6785954.
67. Lee MS, Lee R, Park SH, Kwon SH, Park JY, Lee SW, et al. Metanephrine negative pheochromocytoma: a rare case report of dopamine-secreting tumor in an adolescent neurofibromatosis type 1 patient. Ann Pediatr Endocrinol Metab. 2022; 28(4):302–307. DOI: 10.6065/apem.2244016.008. PMID: 35798304. PMCID: PMC10765029.
Article
68. Kantorovich V, King KS, Pacak K. SDH-related pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab. 2010; 24(3):415–424. DOI: 10.1016/j.beem.2010.04.001. PMID: 20833333. PMCID: PMC2939070.
Article
69. Amar L, Pacak K, Steichen O, Akker SA, Aylwin SJB, Baudin E, et al. International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers. Nat Rev Endocrinol. 2021; 17(7):435–444. DOI: 10.1038/s41574-021-00492-3. PMID: 34021277. PMCID: PMC8205850.
Article
70. Taschner PEM, Jansen JC, Baysal BE, Bosch A, Rosenberg EH, Bröcker-Vriends AHJT, et al. Nearly all hereditary paragangliomas in The Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer. 2001; 31(3):274–281. DOI: 10.1002/gcc.1144. PMID: 11391798.
Article
Full Text Links
  • EMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr