Brain Tumor Res Treat.  2024 Jan;12(1):23-39. 10.14791/btrt.2023.0036.

Comprehensive Molecular Genetic Analysis in Glioma Patients by Next Generation Sequencing

Affiliations
  • 1Departments of Hospital Pathology , Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Departments of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Background
Glioma is caused by multiple genomic alterations. The evolving classification of glio- mas emphasizes the significance of molecular testing. Next generation sequencing (NGS) offers the assessment of parallel combinations of multiple genetic alterations and identifying actionable mutations that guide treatment. This study comprehensively analyzed glioma patients using multi-gene NGS panels, providing powerful insights to inform diagnostic classification and targeted therapies.
Methods
We conducted a targeted panel-based NGS analysis on formalin-fixed and paraffin- embedded nucleic acids extracted from a total of 147 glioma patients. These samples underwent amplicon capture-based library preparation and sequenced using the Oncomine Comprehensive Assay platform. The resulting sequencing data were then analyzed using the bioinformatics tools.
Results
A total of 301 mutations, were found in 132 out of 147 tumors (89.8%). These muta- tions were in 68 different genes. In 62 tumor samples (42.2%), copy number variations (CNVs) with gene amplifications occurred in 25 genes. Moreover, 25 tumor samples (17.0%) showed gene fusions in 6 genes and intragenic deletion in a gene. Our analysis identified actionable targets in several genes, including 11 with mutations, 8 with CNVs, and 3 with gene fusions and intragenic deletion. These findings could impact FDA-approved therapies, NCCN guideline-based treatments, and clinical trials.
Conclusion
We analyzed precisely diagnosing the classification of gliomas, detailing the frequency and co-occurrence of genetic alterations and identifying genetic alterations with potential therapeutic targets by NGS-based molecular analysis. The high-throughput NGS analysis is an efficient and powerful tool to comprehensively support molecular testing in neurooncology.

Keyword

Glioma; Next generation sequencing; Genetic variation; Molecular targeted therapy

Figure

  • Fig. 1 The mutation frequency for each diagnosis type. A: Frequency of highly mutated 12 genes in 147 patients with glioma. The mutation frequency of highly mutated 9 genes in each pathological diagnosis of gliomas (B: astrocytomas, C: glioblastomas, D: other gliomas).

  • Fig. 2 Correlation of detected mutations. A: A combined plot of 64 genes correlated with each other. It shows the combination of 64 genes whose mutations are correlated with each other out of a total of 68 genes detected. The dot is the name of the gene mutation and the circular line matches the frequency of the gene mutation. Different colors represent different genes and the length of each color circle line represents the number of mutations. The curve in the middle of the circle represents the sample and the two ends of the curve are gene mutations that occur simultaneously with each other in the sample. The correlations with other genes are linked by lines, and single gene mutations are matched back to their own genes. B: Correlation heat map between 36 genes with significant correlation for each gene detected by more than one in a total of 68 genes (p<0.05).

  • Fig. 3 The distribution of copy number values in 25 genes, ranging from 6 up to 180.

  • Fig. 4 Correlation of detected copy number variables. A: A combined plot of 25 genes correlated with each other. This shows that the combination of CNVs in a total of 25 genes detected correlates with each other. Different colors represent different genes and the length of each color line represents the number of CNVs. The curve in the middle of the circle represents the sample and the two ends of the curve are gene CNVs that occur simultaneously with each other in the sample. Especially CNV does not occur simultaneously in the same tumor, so most curves have the same genes. B: Correlation heat map between 25 genes with significant correlation for each gene (p<0.05). CNVs, copy number variations.


Reference

1. Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol. 2019; 15:405–417. PMID: 31227792.
Article
2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131:803–820. PMID: 27157931.
Article
3. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23:1231–1251. PMID: 34185076.
Article
4. Lorenz J, Rothhammer-Hampl T, Zoubaa S, Bumes E, PukropT , Kolbl O, et al. A comprehensive DNA panel next generation sequencing approach supporting diagnostics and therapy prediction inneurooncology. Acta Neuropathol Commun. 2020; 8:124. PMID: 32758285.
Article
5. Tirrò E, Massimino M, Broggi G, Romano C, Minasi S, Gianno F, et al. Custom DNA-based NGS panel for the molecular characterization of patients with diffuse gliomas: diagnostic and therapeutic applications. Front Oncol. 2022; 12:861078. PMID: 35372034.
Article
6. Śledzińska P, Bebyn M, Szczerba E, Furtak J, Harat M, Olszewska N, et al. Glioma 2021 WHO classification: the superiority of NGS Over IHC in routine diagnostics. Mol Diagn Ther. 2022; 26:699–713. PMID: 36053463.
7. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005; 109:93–108. PMID: 15685439.
8. Sonoda Y, Kumabe T, Nakamura T, Saito R, Kanamori M, Yamashita Y, et al. Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci. 2009; 100:1996–1998. PMID: 19765000.
9. Yuan Y, Qi C, Maling G, Xiang W, Yanhui L, Ruofei L, et al. TERT mutation in glioma: frequency, prognosis and risk. J Clin Neurosci. 2016; 26:57–62. PMID: 26765760.
Article
10. Powter B, Jeffreys SA, Sareen H, Cooper A, Brungs D, Po J, et al. Human TERT promoter mutations as a prognostic biomarker in glioma. J Cancer Res Clin Oncol. 2021; 147:1007–1017. PMID: 33547950.
Article
11. Hoogstrate Y, Vallentgoed W, Kros JM, de Heer I, de Wit M, Eoli M, et al. EGFR mutations are associated with response to depatux-m in combination with temozolomide and result in a receptor that is hypersensitive to ligand. Neurooncol Adv. 2019; 2:vdz051. PMID: 32642719.
Article
12. Pappula AL, Rasheed S, Mirzaei G, Petreaca RC, Bouley RA. A genome-wide profiling of glioma patients with an IDH1 mutation using the Catalogue of Somatic Mutations in Cancer Database. Cancers (Basel). 2021; 13:4299. PMID: 34503108.
Article
13. Cahill DP, Louis DN, Cairncross JG. Molecular background of oligodendroglioma: 1p/19q, IDH, TERT, CIC and FUBP1. CNS Oncol. 2015; 4:287–294. PMID: 26545048.
Article
14. Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008; 321:1807–1812. PMID: 18772396.
Article
15. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset PO, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet. 2014; 46:462–466. PMID: 24705250.
Article
16. Erira A, Velandia F, Penagos J, Zubieta C, Arboleda G. Differential regulation of the EGFR/PI3K/AKT/PTEN pathway between low- and high-grade gliomas. Brain Sci. 2021; 11:1655. PMID: 34942957.
17. Zeng C, Wang J, Li M, Wang H, Lou F, Cao S, et al. Comprehensive molecular characterization of Chinese patients with glioma by extensive next-generation sequencing panel analysis. Cancer Manag Res. 2021; 13:3573–3588. PMID: 33953611.
Article
18. González-Tablas M, Arandia D, Jara-Acevedo M, Otero Á, Vital AL, Prieto C, et al. Heterogeneous EGFR, CDK4, MDM4, and PDGFRA gene expression profiles in primary GBM: no association with patient survival. Cancers (Basel). 2020; 12:231. PMID: 31963499.
Article
19. Furgason JM, Koncar RF, Michelhaugh SK, Sarkar FH, Mittal S, Sloan AE, et al. Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma. Oncoscience. 2015; 2:618–628. PMID: 26328271.
Article
20. An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018; 37:1561–1575. PMID: 29321659.
Article
21. Lassman AB, Aldape KD, Ansell PJ, Bain E, Curran WJ, Eoli M, et al. Epidermal growth factor receptor (EGFR) amplification rates observed in screening patients for randomized trials in glioblastoma. J Neurooncol. 2019; 144:205–210. PMID: 31273577.
Article
22. Zwick E, Bange J, Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer. 2001; 8:161–173. PMID: 11566607.
Article
23. Garima G, Thanvi S, Singh A, Verma V. Epidermal growth factor receptor variant III mutation, an emerging molecular marker in glioblastoma multiforme patients: a single institution study on the Indian population. Cureus. 2022; 14:e26412. PMID: 35911278.
Article
24. Shah N, Lankerovich M, Lee H, Yoon JG, Schroeder B, Foltz G. Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data. BMC Genomics. 2013; 14:818. PMID: 24261984.
Article
25. Frattini V, Pagnotta SM, Tala Fan JJ, Russo MV, Lee SB, Garofano L, et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature. 2018; 553:222–227. PMID: 29323298.
Article
26. Ferguson SD, Zhou S, Huse JT, de Groot JF, Xiu J, Subramaniam DS, et al. Targetable gene fusions associate with the IDH wild-type astrocytic lineage in adult gliomas. J Neuropathol Exp Neurol. 2018; 77:437–442. PMID: 29718398.
Article
27. Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K, Ye WL, et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res. 2014; 24:1765–1773. PMID: 25135958.
Article
28. Mrowczynski OD, Payne R, Pu C, Greiner R, Rizk E. A unique case of a high-grade neuroepithelial tumor with EML4-ALK fusion in a five-month-old. Cureus. 2020; 12:e8654. PMID: 32685319.
Article
29. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015; 27:728–743. PMID: 25965575.
Article
30. Padovan M, Maccari M, Bosio A, De Toni C, Vizzaccaro S, Cestonaro I, et al. Actionable molecular alterations in newly diagnosed and recurrent IDH1/2 wild-type glioblastoma patients and therapeutic implications: a large mono-institutional experience using extensive next-generation sequencing analysis. Eur J Cancer. 2023; 191:112959. PMID: 37481865.
Article
31. Ministry of Food and Drug Safety. Search for clinical trial information [Internet]. Cheongju: Ministry of Food and Drug Safety;2023. Accessed August 1, 2023. at: https://nedrug.mfds.go.kr/searchClinic.
32. Mellinghoff IK, van den Bent MJ, Blumenthal DT, Touat M, Peters KB, Clarke J, et al. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N Engl J Med. 2023; 389:589–601. PMID: 37272516.
Article
33. Mellinghoff IK, van den Bent MJ, Blumenthal DT, Touat M, Peters KB, Clarke JL, et al. INDIGO: A global, randomized, double-blinded, phase 3 study of vorasidenib versus placebo in patients with residual or recurrent grade 2 glioma with an IDH1/2 mutation. J Clin Oncol. 2023; 41(suppl 17):LBA1.
34. Arbour G, Ellezam B, Weil AG, Cayrol R, Vanan MI, Coltin H, et al. Upfront BRAF/MEK inhibitors for treatment of high-grade glioma: a case report and review of the literature. Neurooncol Adv. 2022; 4:vdac174. PMID: 36567957.
Article
35. Olympios N, Gilard V, Marguet F, Clatot F, Di Fiore F, Fontanilles M. TERT promoter alterations in glioblastoma: a systematic review. Cancers (Basel). 2021; 13:1147. PMID: 33800183.
Article
36. Di Stefano AL, Picca A, Saragoussi E, Bielle F, Ducray F, Villa C, et al. Clinical, molecular, and radiomic profile of gliomas with FGFR3-TACC3 fusions. Neuro Oncol. 2020; 22:1614–1624. PMID: 32413119.
Article
37. Wen PY, de Groot JF, Battiste J, Goldlust SA, Garner JS, Friend J, et al. Paxalisib in patients with newly diagnosed glioblastoma with unmethylated MGMT promoter status: final phase 2 study results. J Clin Oncol. 2022; 40(16_suppl):2047.
Article
38. Tiu C, Biondo A, Welsh LC, Jones TL, Zachariou A, Prout T, et al. Results of the glioblastoma multiforme (GBM) cohort of phase 1 trial Ice-CAP (NCT03673787): preliminary evidence of antitumour activity of Ipatasertib (Ipa) and Atezolizumab (A) in patients (pts) with PTEN loss. Cancer Res. 2021; 81(13_Supplement):CT120.
39. Alexandru O, Horescu C, Sevastre AS, Cioc CE, Baloi C, Oprita A, et al. Receptor tyrosine kinase targeting in glioblastoma: performance, limitations and future approaches. Contemp Oncol (Pozn). 2020; 24:55–66. PMID: 32514239.
Article
40. Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel receptor tyrosine kinase pathway inhibitors for targeted radionuclide therapy of glioblastoma. Pharmaceuticals (Basel). 2021; 14:626. PMID: 34209513.
Article
41. Lombardi G, Caccese M, Padovan M, Cerretti G, Pintacuda G, Manara R, et al. Regorafenib in recurrent glioblastoma patients: a large and monocentric real-life study. Cancers (Basel). 2021; 13:4731. PMID: 34572958.
Article
42. Sepúlveda-Sánchez JM, Vaz MÁ, Balañá C, Gil-Gil M, Reynés G, Gallego Ó, et al. Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro Oncol. 2017; 19:1522–1531. PMID: 28575464.
Article
43. Sepúlveda JM, Sánchez-Gómez P, Vaz Salgado MÁ, Gargini R, Balañá C. Dacomitinib: an investigational drug for the treatment of glioblastoma. Expert Opin Investig Drugs. 2018; 27:823–829.
Article
44. Byeon S, Hong JY, Lee J, Nam DH, Park SH, Park JO, et al. Use of gefitinib in EGFR-amplified refractory solid tumors: an open-label, single-arm. single-center prospective pilot study. Target Oncol. 2020; 15:185–192. PMID: 32107712.
Article
45. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJ, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Trans Med. 2017; 9:eaaa0984.
Article
46. Durgin JS, Henderson F Jr, Nasrallah MP, Mohan S, Wang S, Lacey SF, et al. Case report: prolonged survival following EGFRvIII CAR T cell treatment for recurrent glioblastoma. Front Oncol. 2021; 11:669071. PMID: 34026647.
Article
47. Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M, Mańdziuk S. New directions in the therapy of glioblastoma. Cancers (Basel). 2022; 31:14.
Article
48. Bao Z, Li S, Wang L, Zhang B, Zhang P, Shi H, et al. PTPRZ1-METFUsion GENe (ZM-FUGEN) trial: study protocol for a multicentric, randomized, open-label phase II/III trial. Chin Neurosurg J. 2023; 9:21. PMID: 37443050.
Article
49. Salloum R, Huang J, Stewart CF, Fuller C, Smolarek T, Lenzen A, et al. TRLS-11. A phase 1 study of savolitinib in recurrent, progressive, or refractory medulloblastoma, high grade glioma, diffuse intrinsic pontine glioma, and central nervous system (CNS) tumors harboring MET aberrations: a pediatric brain tumor consortium trial. Neuro Oncol. 2023; 25(Suppl 1):i81.
50. Hong D, Catenacci D, Bazhenova L, Cho BC, Ponz-Sarvise M, Heist R, et al. Preliminary interim data of elzovantinib (TPX-0022), a novel inhibitor of MET/SRC/CSF1R, in patients with advanced solid tumors harboring genetic alterations in MET: update from the phase 1 SHIELD-1 trial. Mol Cancer Ther. 2021; 20(12_Supplement):P225.
Article
51. Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Román-Gil M, Orejana-Martín I, Torres-Jiménez J, et al. Tyrosine kinase receptors in oncology. Int J Mol Sci. 2020; 21:8529. PMID: 33198314.
Article
Full Text Links
  • BTRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr