Ann Lab Med.  2023 Jan;43(1):5-18. 10.3343/alm.2023.43.1.5.

Calibration Practices in Clinical Mass Spectrometry: Review and Recommendations

Affiliations
  • 1Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
  • 2Flinders University International Centre for Point-of-Care Testing, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
  • 3Engineering Cluster, Singapore Institute of Technology, Singapore, Singapore

Abstract

Background
Calibration is a critical component for the reliability, accuracy, and precision of mass spectrometry measurements. Optimal practice in the construction, evaluation, and implementation of a new calibration curve is often underappreciated. This systematic review examined how calibration practices are applied to liquid chromatography-tandem mass spectrometry measurement procedures.
Methods
The electronic database PubMed was searched from the date of database inception to April 1, 2022. The search terms used were “calibration,” “mass spectrometry,” and “regression.” Twenty-one articles were identified and included in this review, following evaluation of the titles, abstracts, full text, and reference lists of the search results.
Results
The use of matrix-matched calibrators and stable isotope-labeled internal standards helps to mitigate the impact of matrix effects. A higher number of calibration standards or replicate measurements improves the mapping of the detector response and hence the accuracy and precision of the regression model. Constructing a calibration curve with each analytical batch recharacterizes the instrument detector but does not reduce the actual variability. The analytical response and measurand concentrations should be considered when constructing a calibration curve, along with subsequent use of quality controls to confirm assay performance. It is important to assess the linearity of the calibration curve by using actual experimental data and appropriate statistics. The heteroscedasticity of the calibration data should be investigated, and appropriate weighting should be applied during regression modeling.
Conclusions
This review provides an outline and guidance for optimal calibration practices in clinical mass spectrometry laboratories.

Keyword

Calibration; Mass spectrometry; Regression; Linearity; Statistics

Figure

  • Fig. 1 Flowchart for selection of articles to be included in the literature review.


Reference

1. Moosavi SM, Ghassabian S. Stauffer MT, editor. 2018. Linearity of calibration curves for analytical methods: a review of criteria for assessment of method reliability. Calibration and validation of analytical methods. IntechOpen;https://doi.org/10.5772/intechopen.72932. DOI: 10.5772/intechopen.72932.
Article
2. Zabell APR, Lytle FE, Julian RK. 2016; A proposal to improve calibration and outlier detection in high-throughput mass spectrometry. Clin Mass Spectrom. 2:25–33. DOI: 10.1016/j.clinms.2016.12.003.
Article
3. Raposo F. 2016; Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: A tutorial review. Trends Analyt Chem. 77:167–85. DOI: 10.1016/j.trac.2015.12.006.
Article
4. Cortese M, Gigliobianco MR, Magnoni F, Censi R, Di Martino PD. 2020; Compensate for or minimize matrix effects? Strategies for overcoming matrix effects in liquid chromatography-mass spectrometry technique: A tutorial review. Molecules. 25:E3047. DOI: 10.3390/molecules25133047. PMID: 32635301. PMCID: PMC7412464.
Article
5. CLSI. 2014. Liquid chromatography-mass spectrometry methods. CLSI C62-A. Clinical and Laboratory Standards Institute;Wayne, PA: DOI: 10.1016/j.trac.2015.12.006.
6. Grant RP, Rappold BA. Rifai N, Horvath AR, editors. 2018. Development and validation of small molecule analytes by liquid chromatography-tandem mass spectrometry. Principles and applications of clinical mass spectrometry: small molecules, peptides, and pathogens. Amsterdam: Elsevier Science;p. 115–79. DOI: 10.1016/b978-0-12-816063-3.00005-0.
Article
7. CLSI. 2018. Interference testing in clinical chemistry; approved guideline, CLSI Ep07-ED3. Clinical and Laboratory Standards Institute;Wayne, PA: DOI: 10.1016/b978-0-12-816063-3.00005-0.
8. CLSI. 2020. Evaluation of the linearity of quantitative measurement procedures: a statistical approach: approved guideline, CLSI Ep06-ED2. Clinical and Laboratory Standards Institute;Wayne, PA: DOI: 10.1016/b978-0-12-816063-3.00005-0.
9. Liu G, Ji QC, Arnold ME. 2010; Identifying, evaluating, and controlling bioanalytical risks resulting from nonuniform matrix ion suppression/enhancement and nonlinear liquid chromatography−mass spectrometry assay response. Anal Chem. 82:9671–7. DOI: 10.1021/ac1013018. PMID: 21038862.
Article
10. Matuszewski BK, Constanzer ML, Chavez-Eng CM. 2003; Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem. 75:3019–30. DOI: 10.1021/ac020361s. PMID: 12964746.
Article
11. Bonfiglio R, King RC, Olah TV, Merkle K. 1999; The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun Mass Spectrom. 13:1175–85. DOI: 10.1002/(SICI)1097-0231(19990630)13:12<1175::AID-RCM639>3.0.CO;2-0. PMID: 10407294.
Article
12. Hewavitharana AK. 2011; Matrix matching in liquid chromatography-mass spectrometry with stable isotope labelled internal standards-is it necessary? J Chromatogr A. 1218:359–61. DOI: 10.1016/j.chroma.2010.11.047. PMID: 21159347.
Article
13. Nilsson LB, Skansen P. 2012; Investigation of absolute and relative response for three different liquid chromatography/tandem mass spectrometry systems; the impact of ionization and detection saturation. Rapid Commun Mass Spectrom. 26:1399–406. DOI: 10.1002/rcm.6239. PMID: 22592983.
Article
14. Alladio E, Amante E, Bozzolino C, Seganti F, Salomone A, Vincenti M, et al. 2020; Effective validation of chromatographic analytical methods: the illustrative case of androgenic steroids. Talanta. 215:120867. DOI: 10.1016/j.talanta.2020.120867. PMID: 32312473.
Article
15. Shi G. 2003; Application of co-eluting structural analog internal standards for expanded linear dynamic range in liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom. 17:202–6. DOI: 10.1002/rcm.897. PMID: 12539184.
Article
16. Visconti G, Olesti E, González-Ruiz V, Glauser G, Tonoli D, Lescuyer P, et al. 2022; Internal calibration as an emerging approach for endogenous analyte quantification: application to steroids. Talanta. 240:123149. DOI: 10.1016/j.talanta.2021.123149. PMID: 34954616.
Article
17. Wang S, Cyronak M, Yang E. 2007; Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma. J Pharm Biomed Anal. 43:701–7. DOI: 10.1016/j.jpba.2006.08.010. PMID: 16959461.
18. Lindegardh N, Annerberg A, White NJ, Day NP. 2008; Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci. 862:227–36. DOI: 10.1016/j.jchromb.2007.12.011. PMID: 18191623.
19. Yuan L, Zhang D, Jemal M, Aubry AF. 2012; Systematic evaluation of the root cause of non-linearity in liquid chromatography/tandem mass spectrometry bioanalytical assays and strategy to predict and extend the linear standard curve range. Rapid Commun Mass Spectrom. 26:1465–74. DOI: 10.1002/rcm.6252. PMID: 22592990.
Article
20. Jiang F, Liu Q, Li Q, Zhang S, Qu X, Zhu J, et al. 2020; Signal drift in liquid chromatography tandem mass spectrometry and its internal standard calibration strategy for quantitative analysis. Anal Chem. 92:7690–8. DOI: 10.1021/acs.analchem.0c00633. PMID: 32392405.
Article
21. Boyd RK, Basic C, Bethem RA. Trace quantitative analysis by mass spectrometry. Hoboken: John Wiley & Sons. 2011; 373–459.
Article
22. Rule GS, Clark ZD, Yue B, Rockwood AL. 2013; Correction for isotopic interferences between analyte and internal standard in quantitative mass spectrometry by a nonlinear calibration function. Anal Chem. 85:3879–85. DOI: 10.1021/ac303096w. PMID: 23480307.
Article
23. Fu Y, Li W, Flarakos J. 2019; Recommendations and best practices for calibration curves in quantitative LC-MS bioanalysis. Bioanalysis. 11:1375–7. DOI: 10.4155/bio-2019-0149. PMID: 31490108.
Article
24. Huang C, Ammerman J, Connolly P, de Lisio P, Wright D. 2012; Error estimates on normal least squares linear regression with replicate injection of calibration standards. Bioanalysis. 4:1979–87. DOI: 10.4155/bio.12.170. PMID: 22946914.
Article
25. Peters FT, Maurer HH. 2007; Systematic comparison of bias and precision data obtained with multiple-point and one-point calibration in six validated multianalyte assays for quantification of drugs in human plasma. Anal Chem. 79:4967–76. DOI: 10.1021/ac070054s. PMID: 17518444.
Article
26. Tan A, Awaiye K, Trabelsi F. 2014; Impact of calibrator concentrations and their distribution on accuracy of quadratic regression for liquid chromatography-mass spectrometry bioanalysis. Anal Chim Acta. 815:33–41. DOI: 10.1016/j.aca.2014.01.036. PMID: 24560370.
Article
27. Musuku A, Tan A, Awaiye K, Trabelsi F. 2013; Comparison of two-concentration with multi-concentration linear regressions: retrospective data analysis of multiple regulated LC-MS bioanalytical projects. J Chromatogr B Analyt Technol Biomed Life Sci. 934:117–23. DOI: 10.1016/j.jchromb.2013.07.007. PMID: 23917407.
Article
28. Gu H, Liu G, Wang J, Aubry AF, Arnold ME. 2014; Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance. Anal Chem. 86:8959–66. DOI: 10.1021/ac5018265. PMID: 25157966.
Article
29. Brister-Smith A, Young JA, Saitman A. 2021; A 24-hour extended calibration strategy for quantitating tacrolimus concentrations by liquid chromatography-tandem mass spectrometry. J Appl Lab Med. 6:1293–8. DOI: 10.1093/jalm/jfab048. PMID: 34136903.
Article
30. Mansilha C, Melo A, Rebelo H, Ferreira IM, Pinho O, Domingues V, et al. 2010; Quantification of endocrine disruptors and pesticides in water by gas chromatography-tandem mass spectrometry. Method validation using weighted linear regression schemes. J Chromatogr A. 1217:6681–91. DOI: 10.1016/j.chroma.2010.05.005. PMID: 20553685.
Article
31. da Silva CP, Emídio ES, de Marchi MR. 2015; Method validation using weighted linear regression models for quantification of UV filters in water samples. Talanta. 131:221–7. DOI: 10.1016/j.talanta.2014.07.041. PMID: 25281096.
Article
32. Lavagnini I, Magno F. 2007; A statistical overview on univariate calibration, inverse regression, and detection limits: application to gas chromatography/mass spectrometry technique. Mass Spectrom Rev. 26:1–18. DOI: 10.1002/mas.20100. PMID: 16788893.
Article
33. Desharnais B, Camirand-Lemyre F, Mireault P, Skinner CD. 2017; Procedure for the selection and validation of a calibration model II-theoretical basis. J Anal Toxicol. 41:269–76. DOI: 10.1093/jat/bkx002. PMID: 28158619.
Article
34. Galitzine C, Egertson JD, Abbatiello S, Henderson CM, Pino LK, MacCoss M, et al. 2018; Nonlinear regression improves accuracy of characterization of multiplexed mass spectrometric assays. Mol Cell Proteomics. 17:913–24. DOI: 10.1074/mcp.RA117.000322. PMID: 29438992. PMCID: PMC5930407.
Article
35. Lavagnini I, Favaro G, Magno F. 2004; Non-linear and non-constant variance calibration curves in analysis of volatile organic compounds for testing of water by the purge-and-trap method coupled with gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 18:1383–91. DOI: 10.1002/rcm.1498. PMID: 15174195.
Article
36. Sayago A, Asuero AG. 2004; Fitting straight lines with replicated observations by linear regression: Part II. Testing for homogeneity of variances. Crit Rev Anal Chem. 34:133–46. DOI: 10.1080/10408340490888599.
Article
37. Pitarch-Motellón J, Fabregat-Cabello N, Le Goff C, Roig-Navarro AF, Sancho-Llopis JV, Cavalier E. 2019; Comparison of isotope pattern deconvolution and calibration curve quantification methods for the determination of estrone and 17β-estradiol in human serum. J Pharm Biomed Anal. 171:164–70. DOI: 10.1016/j.jpba.2019.04.013. PMID: 31003006.
Article
38. Olson MT, Breaud A, Harlan R, Emezienna N, Schools S, Yergey AL, et al. 2013; Alternative calibration strategies for the clinical laboratory: application to nortriptyline therapeutic drug monitoring. Clin Chem. 59:920–7. DOI: 10.1373/clinchem.2012.194639. PMID: 23426427. PMCID: PMC4162085.
Article
39. Couchman L, Belsey SL, Handley SA, Flanagan RJ. 2013; A novel approach to quantitative LC-MS/MS: therapeutic drug monitoring of clozapine and norclozapine using isotopic internal calibration. Anal Bioanal Chem. 405:9455–66. DOI: 10.1007/s00216-013-7361-8. PMID: 24091736.
Article
40. Rappold BA, Hoofnagle AN. 2017; Bias due to isotopic incorporation in both relative and absolute protein quantitation with carbon-13 and nitrogen-15 labeled peptides. Clin Mass Spectrom. 3:13–21. DOI: 10.1016/j.clinms.2017.04.002.
Article
41. Hoffman MA, Schmeling M, Dahlin JL, Bevins NJ, Cooper DP, Jarolim P, et al. 2020; Calibrating from within: multipoint internal calibration of a quantitative mass spectrometric assay of serum methotrexate. Clin Chem. 66:474–82. DOI: 10.1093/clinchem/hvaa003. PMID: 32057077.
Article
42. Rappold BA. 2022; Review of the use of liquid chromatography-tandem mass spectrometry in clinical laboratories: Part I-Development. Ann Lab Med. 42:121–40. DOI: 10.3343/alm.2022.42.2.121. PMID: 34635606. PMCID: PMC8548246.
Article
43. Rappold BA. 2022; Review of the use of liquid chromatography-tandem mass spectrometry in clinical laboratories: Part II-Operations. Ann Lab Med. 42:531–57. DOI: 10.3343/alm.2022.42.5.531. PMID: 35470272. PMCID: PMC9057814.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr