Korean J Orthod.  2023 Nov;53(6):393-401. 10.4041/kjod23.091.

Effects of 4-hexylresorcinol on facial skeletal development in growing rats: Considerations for diabetes

Affiliations
  • 1Department of Orthodontics, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
  • 2Department of Oral and Maxillofacial Surgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, Korea
  • 3Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Korea
  • 4Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea

Abstract


Objective
To investigate the long-term effects of 4-hexylresorcinol (4HR) on facial skeletal growth in growing male rats, with a focus on diabetic animal models. Methods: Forty male rats were used. Of them, type 1 diabetes mellitus was induced in 20 animals by administering 40 mg/kg streptozotocin (STZ), and they were assigned to either the STZ or 4HR-injected group (STZ/4HR group). The remaining 20 healthy rats were divided into control and 4HR groups. We administered 4HR subcutaneously at a weekly dose of 10 mg/kg until the rats were euthanized. At 16 weeks of age, whole blood was collected, and microcomputed tomography of the skull and femur was performed. Results: All craniofacial linear measurements were smaller in the STZ group than in the control group. The mandibular molar width was significantly smaller in the 4HR group than in the control group (P = 0.031) but larger in the STZ/4HR group than in the STZ group (P = 0.011). Among the diabetic animals, the STZ/4HR group exhibited significantly greater cortical bone thickness, bone mineral density, and bone volume than the STZ group. Serum testosterone levels were also significantly higher in the STZ/4HR group than in the STZ group.
Conclusions
4HR administration may have divergent effects on mandibular growth and bone mass in healthy and diabetic rats. In the context of diabetes, 4HR appears to have beneficial effects, potentially through the modulation of mitochondrial respiration.

Keyword

4-hexylresorcinol; Micro-computed tomography; Diabetes mellitus; Testosterone

Figure

  • Figure 1 Experimental design. STZ, streptozotocin; 4HR, 4- hexylresorcinol.

  • Figure 2 Linear measurements on cone-beam computed tomography images.

  • Figure 3 Serum testosterone levels. Hemolysis prevented the separation of serum in one sample from the control group and three samples each from the STZ and STZ/4HR groups. These samples weren’t included in the testosterone analysis. The control group displayed higher testosterone levels than the 4HR group, but this difference lacked statistical significance (P > 0.05). On the other hand, a marked difference was evident between the STZ group and the STZ/4HR group (**P < 0.01). STZ, streptozotocin; 4HR, 4-hexylresorcinol.


Reference

1. Manlove AE, Romeo G, Venugopalan SR. 2020; Craniofacial growth: current theories and influence on management. Oral Maxillofac Surg Clin North Am. 32:167–75. https://doi.org/10.1016/j.coms.2020.01.007. DOI: 10.1016/j.coms.2020.01.007. PMID: 32151371.
Article
2. Nonaka K, Nakata M. 1988; Genetic and environmental factors in the longitudinal growth of rats: III. Craniofacial shape change. J Craniofac Genet Dev Biol. 8:337–44. https://pubmed.ncbi.nlm.nih.gov/3220936/. PMID: 3220936.
3. Varrela J. 1991; Genetic and epigenetic regulation of craniofacial development. Proc Finn Dent Soc. 87:239–44. https://pubmed.ncbi.nlm.nih.gov/1896436/. PMID: 1896436.
4. De Clerck HJ, Proffit WR. 2015; Growth modification of the face: a current perspective with emphasis on Class III treatment. Am J Orthod Dentofacial Orthop. 148:37–46. https://doi.org/10.1016/j.ajodo.2015.04.017. DOI: 10.1016/j.ajodo.2015.04.017. PMID: 26124026.
Article
5. Fränkel R, Fränkel C. 1983; A functional approach to treatment of skeletal open bite. Am J Orthod. 84:54–68. https://doi.org/10.1016/0002-9416(83)90148-3. DOI: 10.1016/0002-9416(83)90148-3. PMID: 6575617.
Article
6. Bannister AJ, Kouzarides T. 2011; Regulation of chromatin by histone modifications. Cell Res. 21:381–95. https://doi.org/10.1038/cr.2011.22. DOI: 10.1038/cr.2011.22. PMID: 21321607. PMCID: PMC3193420.
Article
7. Roth SY, Denu JM, Allis CD. 2001; Histone acetyltransferases. Annu Rev Biochem. 70:81–120. https://doi.org/10.1146/annurev.biochem.70.1.81. DOI: 10.1146/annurev.biochem.70.1.81. PMID: 11395403.
Article
8. Adithya SP, Balagangadharan K, Selvamurugan N. 2022; Epigenetic modifications of histones during osteoblast differentiation. Biochim Biophys Acta Gene Regul Mech. 1865:194780. https://doi.org/10.1016/j.bbagrm.2021.194780. DOI: 10.1016/j.bbagrm.2021.194780. PMID: 34968769.
9. Yi SJ, Lee H, Lee J, Lee K, Kim J, Kim Y, et al. 2019; Bone remodeling: histone modifications as fate determinants of bone cell differentiation. Int J Mol Sci. 20:3147. https://doi.org/10.3390/ijms20133147. DOI: 10.3390/ijms20133147. PMID: 31252653. PMCID: PMC6651527. PMID: e5113bd4076e4317ac400bbc81457e03.
Article
10. Cho HH, Park HT, Kim YJ, Bae YC, Suh KT, Jung JS. 2005; Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem. 96:533–42. https://doi.org/10.1002/jcb.20544. DOI: 10.1002/jcb.20544. PMID: 16088945.
Article
11. Schroeder TM, Westendorf JJ. 2005; Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res. 20:2254–63. https://doi.org/10.1359/JBMR.050813. DOI: 10.1359/JBMR.050813. PMID: 16294278.
Article
12. Kim JY, Kweon HY, Kim DW, Choi JY, Kim SG. 2021; 4-Hexylresorcinol inhibits class I histone deacetylases in human umbilical cord endothelial cells. Appl Sci. 11:3486. https://doi.org/10.3390/app11083486. DOI: 10.3390/app11083486. PMID: f3d75fa5abcb472bab56a06504f3b80e.
Article
13. Choi KH, Kim DW, Lee SK, Kim SG, Kim TW. 2020; The administration of 4-Hexylresorcinol accelerates orthodontic tooth movement and increases the expression level of bone turnover markers in ovariectomized rats. Int J Mol Sci. 21:1526. https://doi.org/10.3390/ijms21041526. DOI: 10.3390/ijms21041526. PMID: 32102282. PMCID: PMC7073238. PMID: 14ab0cfa60844623a0b2623b24722eb4.
Article
14. Lee IS, Kim DW, Oh JH, Lee SK, Choi JY, Kim SG, et al. 2021; Effects of 4-Hexylresorcinol on craniofacial growth in rats. Int J Mol Sci. 22:8935. https://doi.org/10.3390/ijms22168935. DOI: 10.3390/ijms22168935. PMID: 34445640. PMCID: PMC8396282. PMID: 9fa527cfe37f4978b6da774169732c62.
Article
15. Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H, Eriksson KF, et al. 2005; Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 28:1636–42. https://doi.org/10.2337/diacare.28.7.1636. DOI: 10.2337/diacare.28.7.1636. PMID: 15983313.
Article
16. Wada J, Nakatsuka A. 2016; Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Med Okayama. 70:151–8. https://doi.org/10.18926/AMO/54413. DOI: 10.18926/AMO/54413. PMID: 27339203.
Article
17. Sangwung P, Petersen KF, Shulman GI, Knowles JW. 2020; Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology. 161:bqaa017. https://doi.org/10.1210/endocr/bqaa017. DOI: 10.1210/endocr/bqaa017. PMID: 32060542. PMCID: PMC7341556.
Article
18. Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG. 2017; The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J Diabetes Res. 2017:1673081. https://doi.org/10.1155/2017/1673081. DOI: 10.1155/2017/1673081. PMID: 29204450. PMCID: PMC5674726. PMID: 8bb534eeef0a4869b3903a9d98d15f4e.
Article
19. Lee IS, Chang JH, Kim DW, Kim SG, Kim TW. 2021; The effect of 4-hexylresorinol administration on NAD+ level and SIRT activity in Saos-2 cells. Maxillofac Plast Reconstr Surg. 43:39. https://doi.org/10.1186/s40902-021-00326-2. DOI: 10.1186/s40902-021-00326-2. PMID: 34719767. PMCID: PMC8558123. PMID: 495ecab97de64170b2dd92b004672ff0.
Article
20. Ghodsi M, Larijani B, Keshtkar AA, Nasli-Esfahani E, Alatab S, Mohajeri-Tehrani MR. 2016; Mechanisms involved in altered bone metabolism in diabetes: a narrative review. J Diabetes Metab Disord. 15:52. https://doi.org/10.1186/s40200-016-0275-1. DOI: 10.1186/s40200-016-0275-1. PMID: 27891497. PMCID: PMC5111345.
Article
21. Starup-Linde J, Vestergaard P. 2016; Biochemical bone turnover markers in diabetes mellitus - a systematic review. Bone. 82:69–78. https://doi.org/10.1016/j.bone.2015.02.019. DOI: 10.1016/j.bone.2015.02.019. PMID: 25722065.
Article
22. Qi S, He J, Han H, Zheng H, Jiang H, Hu CY, et al. 2019; Anthocyanin-rich extract from black rice (Oryza sativa L. Japonica) ameliorates diabetic osteoporosis in rats. Food Funct. 10:5350–60. https://doi.org/10.1039/c9fo00681h. DOI: 10.1039/C9FO00681H. PMID: 31393485.
Article
23. Starup-Linde J. 2013; Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol (Lausanne). 4:21. https://doi.org/10.3389/fendo.2013.00021. DOI: 10.3389/fendo.2013.00021. PMID: 23482417. PMCID: PMC3591742. PMID: bc9b94d928264341a0419dfe174f7238.
Article
24. Yao S, Du Z, Xiao L, Yan F, Ivanovski S, Xiao Y. 2022; Morphometric changes of osteocyte lacunar in diabetic pig mandibular cancellous bone. Biomolecules. 13:49. https://doi.org/10.3390/biom13010049. DOI: 10.3390/biom13010049. PMID: 36671434. PMCID: PMC9856050. PMID: f3f15339cd8c400f8082d3ac151adc06.
Article
25. Mohamad NV, Soelaiman IN, Chin KY. 2016; A concise review of testosterone and bone health. Clin Interv Aging. 11:1317–24. https://doi.org/10.2147/CIA.S115472. DOI: 10.2147/CIA.S115472. PMID: 27703340. PMCID: PMC5036835.
Article
26. Wang N, Wang L, Huang C. 2021; Association of total testosterone status with bone mineral density in adults aged 40-60 years. J Orthop Surg Res. 16:612. https://doi.org/10.1186/s13018-021-02714-w. DOI: 10.1186/s13018-021-02714-w. PMID: 34663369. PMCID: PMC8522080. PMID: 70ae543629444270926ad1b994bbaa0a.
Article
27. Chen H, Chan DC. 2017; Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab. 26:39–48. https://doi.org/10.1016/j.cmet.2017.05.016. DOI: 10.1016/j.cmet.2017.05.016. PMID: 28648983. PMCID: PMC5539982.
Article
28. Kim JY, Kim DW, Lee SK, Choi JY, Che X, Kim SG, et al. 2021; Increased expression of TGF-β1 by 4-hexylresorcinol is mediated by endoplasmic reticulum and mitochondrial stress in human umbilical endothelial vein cells. Appl Sci. 11:9128. https://doi.org/10.3390/app11199128. DOI: 10.3390/app11199128. PMID: c1ba3c9bae2541ee881b545ac14a1db6.
Article
29. Kim SG. 2022; 4-Hexylresorcinol: pharmacologic chaperone and its application for wound healing. Maxillofac Plast Reconstr Surg. 44:5. https://doi.org/10.1186/s40902-022-00334-w. DOI: 10.1186/s40902-022-00334-w. PMID: 35103875. PMCID: PMC8805429. PMID: 2e5d9fc4a92245c2bb0c89d979820496.
Article
30. Brownlee M. 2001; Biochemistry and molecular cell biology of diabetic complications. Nature. 414:813–20. https://doi.org/10.1038/414813a. DOI: 10.1038/414813a. PMID: 11742414.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr